Ruby  2.7.0p0(2019-12-25revision647ee6f091eafcce70ffb75ddf7e121e192ab217)
time.c
Go to the documentation of this file.
1 /**********************************************************************
2 
3  time.c -
4 
5  $Author$
6  created at: Tue Dec 28 14:31:59 JST 1993
7 
8  Copyright (C) 1993-2007 Yukihiro Matsumoto
9 
10 **********************************************************************/
11 
12 #define _DEFAULT_SOURCE
13 #define _BSD_SOURCE
14 #include "ruby/encoding.h"
15 #include "internal.h"
16 #include <sys/types.h>
17 #include <time.h>
18 #include <errno.h>
19 
20 #ifdef HAVE_UNISTD_H
21 #include <unistd.h>
22 #endif
23 
24 #include <float.h>
25 #include <math.h>
26 
27 #ifdef HAVE_STRINGS_H
28 #include <strings.h>
29 #endif
30 
31 #if defined(HAVE_SYS_TIME_H)
32 #include <sys/time.h>
33 #endif
34 
35 #include "timev.h"
36 #include "id.h"
37 
38 static ID id_submicro, id_nano_num, id_nano_den, id_offset, id_zone;
39 static ID id_nanosecond, id_microsecond, id_millisecond, id_nsec, id_usec;
40 static ID id_local_to_utc, id_utc_to_local, id_find_timezone;
41 static ID id_year, id_mon, id_mday, id_hour, id_min, id_sec, id_isdst;
42 #define id_quo idQuo
43 #define id_div idDiv
44 #define id_divmod idDivmod
45 #define id_name idName
46 #define UTC_ZONE Qundef
47 
48 #ifndef TM_IS_TIME
49 #define TM_IS_TIME 1
50 #endif
51 
52 #define NDIV(x,y) (-(-((x)+1)/(y))-1)
53 #define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
54 #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
55 #define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
56 #define VTM_WDAY_INITVAL (7)
57 #define VTM_ISDST_INITVAL (3)
58 
59 static int
60 eq(VALUE x, VALUE y)
61 {
62  if (FIXNUM_P(x) && FIXNUM_P(y)) {
63  return x == y;
64  }
65  return RTEST(rb_funcall(x, idEq, 1, y));
66 }
67 
68 static int
69 cmp(VALUE x, VALUE y)
70 {
71  if (FIXNUM_P(x) && FIXNUM_P(y)) {
72  if ((long)x < (long)y)
73  return -1;
74  if ((long)x > (long)y)
75  return 1;
76  return 0;
77  }
78  if (RB_TYPE_P(x, T_BIGNUM)) return FIX2INT(rb_big_cmp(x, y));
79  return rb_cmpint(rb_funcall(x, idCmp, 1, y), x, y);
80 }
81 
82 #define ne(x,y) (!eq((x),(y)))
83 #define lt(x,y) (cmp((x),(y)) < 0)
84 #define gt(x,y) (cmp((x),(y)) > 0)
85 #define le(x,y) (cmp((x),(y)) <= 0)
86 #define ge(x,y) (cmp((x),(y)) >= 0)
87 
88 static VALUE
89 addv(VALUE x, VALUE y)
90 {
91  if (FIXNUM_P(x) && FIXNUM_P(y)) {
92  return LONG2NUM(FIX2LONG(x) + FIX2LONG(y));
93  }
94  if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_plus(x, y);
95  return rb_funcall(x, '+', 1, y);
96 }
97 
98 static VALUE
99 subv(VALUE x, VALUE y)
100 {
101  if (FIXNUM_P(x) && FIXNUM_P(y)) {
102  return LONG2NUM(FIX2LONG(x) - FIX2LONG(y));
103  }
104  if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_minus(x, y);
105  return rb_funcall(x, '-', 1, y);
106 }
107 
108 static VALUE
109 mulv(VALUE x, VALUE y)
110 {
111  if (FIXNUM_P(x) && FIXNUM_P(y)) {
112  return rb_fix_mul_fix(x, y);
113  }
114  if (RB_TYPE_P(x, T_BIGNUM))
115  return rb_big_mul(x, y);
116  return rb_funcall(x, '*', 1, y);
117 }
118 
119 static VALUE
120 divv(VALUE x, VALUE y)
121 {
122  if (FIXNUM_P(x) && FIXNUM_P(y)) {
123  return rb_fix_div_fix(x, y);
124  }
125  if (RB_TYPE_P(x, T_BIGNUM))
126  return rb_big_div(x, y);
127  return rb_funcall(x, id_div, 1, y);
128 }
129 
130 static VALUE
131 modv(VALUE x, VALUE y)
132 {
133  if (FIXNUM_P(y)) {
134  if (FIX2LONG(y) == 0) rb_num_zerodiv();
135  if (FIXNUM_P(x)) return rb_fix_mod_fix(x, y);
136  }
137  if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_modulo(x, y);
138  return rb_funcall(x, '%', 1, y);
139 }
140 
141 #define neg(x) (subv(INT2FIX(0), (x)))
142 
143 static VALUE
144 quor(VALUE x, VALUE y)
145 {
146  if (FIXNUM_P(x) && FIXNUM_P(y)) {
147  long a, b, c;
148  a = FIX2LONG(x);
149  b = FIX2LONG(y);
150  if (b == 0) rb_num_zerodiv();
151  if (a == FIXNUM_MIN && b == -1) return LONG2NUM(-a);
152  c = a / b;
153  if (c * b == a) {
154  return LONG2FIX(c);
155  }
156  }
157  return rb_numeric_quo(x, y);
158 }
159 
160 static VALUE
161 quov(VALUE x, VALUE y)
162 {
163  VALUE ret = quor(x, y);
164  if (RB_TYPE_P(ret, T_RATIONAL) &&
165  RRATIONAL(ret)->den == INT2FIX(1)) {
166  ret = RRATIONAL(ret)->num;
167  }
168  return ret;
169 }
170 
171 #define mulquov(x,y,z) (((y) == (z)) ? (x) : quov(mulv((x),(y)),(z)))
172 
173 static void
174 divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
175 {
176  VALUE tmp, ary;
177  if (FIXNUM_P(d)) {
178  if (FIX2LONG(d) == 0) rb_num_zerodiv();
179  if (FIXNUM_P(n)) {
180  rb_fix_divmod_fix(n, d, q, r);
181  return;
182  }
183  }
184  tmp = rb_funcall(n, id_divmod, 1, d);
185  ary = rb_check_array_type(tmp);
186  if (NIL_P(ary)) {
187  rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
188  rb_obj_class(tmp));
189  }
190  *q = rb_ary_entry(ary, 0);
191  *r = rb_ary_entry(ary, 1);
192 }
193 
194 #if SIZEOF_LONG == 8
195 # define INT64toNUM(x) LONG2NUM(x)
196 #elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
197 # define INT64toNUM(x) LL2NUM(x)
198 #endif
199 
200 #if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
201  typedef uint64_t uwideint_t;
202  typedef int64_t wideint_t;
203  typedef uint64_t WIDEVALUE;
204  typedef int64_t SIGNED_WIDEVALUE;
205 # define WIDEVALUE_IS_WIDER 1
206 # define UWIDEINT_MAX UINT64_MAX
207 # define WIDEINT_MAX INT64_MAX
208 # define WIDEINT_MIN INT64_MIN
209 # define FIXWINT_P(tv) ((tv) & 1)
210 # define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
211 # define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
212 # define FIXWV_MAX (((int64_t)1 << 62) - 1)
213 # define FIXWV_MIN (-((int64_t)1 << 62))
214 # define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
215 # define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
216 # define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
217 #else
218  typedef unsigned long uwideint_t;
219  typedef long wideint_t;
220  typedef VALUE WIDEVALUE;
222 # define WIDEVALUE_IS_WIDER 0
223 # define UWIDEINT_MAX ULONG_MAX
224 # define WIDEINT_MAX LONG_MAX
225 # define WIDEINT_MIN LONG_MIN
226 # define FIXWINT_P(v) FIXNUM_P(v)
227 # define FIXWV_MAX FIXNUM_MAX
228 # define FIXWV_MIN FIXNUM_MIN
229 # define FIXWVABLE(i) FIXABLE(i)
230 # define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
231 # define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
232 #endif
233 
234 #define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
235 #define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
236 #define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
237 #define MUL_OVERFLOW_FIXWV_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXWV_MIN, FIXWV_MAX)
238 
239 /* #define STRUCT_WIDEVAL */
240 #ifdef STRUCT_WIDEVAL
241  /* for type checking */
242  typedef struct {
243  WIDEVALUE value;
244  } wideval_t;
245  static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
246 # define WIDEVAL_GET(w) ((w).value)
247 #else
249 # define WIDEVAL_WRAP(v) (v)
250 # define WIDEVAL_GET(w) (w)
251 #endif
252 
253 #if WIDEVALUE_IS_WIDER
254  static inline wideval_t
255  wint2wv(wideint_t wi)
256  {
257  if (FIXWVABLE(wi))
258  return WINT2FIXWV(wi);
259  else
260  return WIDEVAL_WRAP(INT64toNUM(wi));
261  }
262 # define WINT2WV(wi) wint2wv(wi)
263 #else
264 # define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
265 #endif
266 
267 static inline VALUE
268 w2v(wideval_t w)
269 {
270 #if WIDEVALUE_IS_WIDER
271  if (FIXWV_P(w))
272  return INT64toNUM(FIXWV2WINT(w));
273  return (VALUE)WIDEVAL_GET(w);
274 #else
275  return WIDEVAL_GET(w);
276 #endif
277 }
278 
279 #if WIDEVALUE_IS_WIDER
280 static wideval_t
281 v2w_bignum(VALUE v)
282 {
283  int sign;
284  uwideint_t u;
285  sign = rb_integer_pack(v, &u, 1, sizeof(u), 0,
287  if (sign == 0)
288  return WINT2FIXWV(0);
289  else if (sign == -1) {
290  if (u <= -FIXWV_MIN)
291  return WINT2FIXWV(-(wideint_t)u);
292  }
293  else if (sign == +1) {
294  if (u <= FIXWV_MAX)
295  return WINT2FIXWV((wideint_t)u);
296  }
297  return WIDEVAL_WRAP(v);
298 }
299 #endif
300 
301 static inline wideval_t
302 v2w(VALUE v)
303 {
304  if (RB_TYPE_P(v, T_RATIONAL)) {
305  if (RRATIONAL(v)->den != LONG2FIX(1))
306  return WIDEVAL_WRAP(v);
307  v = RRATIONAL(v)->num;
308  }
309 #if WIDEVALUE_IS_WIDER
310  if (FIXNUM_P(v)) {
311  return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
312  }
313  else if (RB_TYPE_P(v, T_BIGNUM) &&
314  rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) {
315  return v2w_bignum(v);
316  }
317 #endif
318  return WIDEVAL_WRAP(v);
319 }
320 
321 static int
322 weq(wideval_t wx, wideval_t wy)
323 {
324 #if WIDEVALUE_IS_WIDER
325  if (FIXWV_P(wx) && FIXWV_P(wy)) {
326  return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
327  }
328  return RTEST(rb_funcall(w2v(wx), idEq, 1, w2v(wy)));
329 #else
330  return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
331 #endif
332 }
333 
334 static int
335 wcmp(wideval_t wx, wideval_t wy)
336 {
337  VALUE x, y;
338 #if WIDEVALUE_IS_WIDER
339  if (FIXWV_P(wx) && FIXWV_P(wy)) {
340  wideint_t a, b;
341  a = FIXWV2WINT(wx);
342  b = FIXWV2WINT(wy);
343  if (a < b)
344  return -1;
345  if (a > b)
346  return 1;
347  return 0;
348  }
349 #endif
350  x = w2v(wx);
351  y = w2v(wy);
352  return cmp(x, y);
353 }
354 
355 #define wne(x,y) (!weq((x),(y)))
356 #define wlt(x,y) (wcmp((x),(y)) < 0)
357 #define wgt(x,y) (wcmp((x),(y)) > 0)
358 #define wle(x,y) (wcmp((x),(y)) <= 0)
359 #define wge(x,y) (wcmp((x),(y)) >= 0)
360 
361 static wideval_t
362 wadd(wideval_t wx, wideval_t wy)
363 {
364 #if WIDEVALUE_IS_WIDER
365  if (FIXWV_P(wx) && FIXWV_P(wy)) {
366  wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
367  return WINT2WV(r);
368  }
369 #endif
370  return v2w(addv(w2v(wx), w2v(wy)));
371 }
372 
373 static wideval_t
374 wsub(wideval_t wx, wideval_t wy)
375 {
376 #if WIDEVALUE_IS_WIDER
377  if (FIXWV_P(wx) && FIXWV_P(wy)) {
378  wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
379  return WINT2WV(r);
380  }
381 #endif
382  return v2w(subv(w2v(wx), w2v(wy)));
383 }
384 
385 static wideval_t
386 wmul(wideval_t wx, wideval_t wy)
387 {
388 #if WIDEVALUE_IS_WIDER
389  if (FIXWV_P(wx) && FIXWV_P(wy)) {
391  return WINT2WV(FIXWV2WINT(wx) * FIXWV2WINT(wy));
392  }
393 #endif
394  return v2w(mulv(w2v(wx), w2v(wy)));
395 }
396 
397 static wideval_t
398 wquo(wideval_t wx, wideval_t wy)
399 {
400 #if WIDEVALUE_IS_WIDER
401  if (FIXWV_P(wx) && FIXWV_P(wy)) {
402  wideint_t a, b, c;
403  a = FIXWV2WINT(wx);
404  b = FIXWV2WINT(wy);
405  if (b == 0) rb_num_zerodiv();
406  c = a / b;
407  if (c * b == a) {
408  return WINT2WV(c);
409  }
410  }
411 #endif
412  return v2w(quov(w2v(wx), w2v(wy)));
413 }
414 
415 #define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
416 #define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
417 
418 #if WIDEVALUE_IS_WIDER
419 static int
420 wdivmod0(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
421 {
422  if (FIXWV_P(wn) && FIXWV_P(wd)) {
423  wideint_t n, d, q, r;
424  d = FIXWV2WINT(wd);
425  if (d == 0) rb_num_zerodiv();
426  if (d == 1) {
427  *wq = wn;
428  *wr = WINT2FIXWV(0);
429  return 1;
430  }
431  if (d == -1) {
432  wideint_t xneg = -FIXWV2WINT(wn);
433  *wq = WINT2WV(xneg);
434  *wr = WINT2FIXWV(0);
435  return 1;
436  }
437  n = FIXWV2WINT(wn);
438  if (n == 0) {
439  *wq = WINT2FIXWV(0);
440  *wr = WINT2FIXWV(0);
441  return 1;
442  }
443  q = n / d;
444  r = n % d;
445  if (d > 0 ? r < 0 : r > 0) {
446  q -= 1;
447  r += d;
448  }
449  *wq = WINT2FIXWV(q);
450  *wr = WINT2FIXWV(r);
451  return 1;
452  }
453  return 0;
454 }
455 #endif
456 
457 static void
458 wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
459 {
460  VALUE vq, vr;
461 #if WIDEVALUE_IS_WIDER
462  if (wdivmod0(wn, wd, wq, wr)) return;
463 #endif
464  divmodv(w2v(wn), w2v(wd), &vq, &vr);
465  *wq = v2w(vq);
466  *wr = v2w(vr);
467 }
468 
469 static void
470 wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
471 {
472  if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
473  *wq = wx;
474  *wr = WINT2FIXWV(0);
475  return;
476  }
477  wdivmod(wmul(wx,wy), wz, wq, wr);
478 }
479 
480 static wideval_t
481 wdiv(wideval_t wx, wideval_t wy)
482 {
483 #if WIDEVALUE_IS_WIDER
484  wideval_t q, dmy;
485  if (wdivmod0(wx, wy, &q, &dmy)) return q;
486 #endif
487  return v2w(divv(w2v(wx), w2v(wy)));
488 }
489 
490 static wideval_t
491 wmod(wideval_t wx, wideval_t wy)
492 {
493 #if WIDEVALUE_IS_WIDER
494  wideval_t r, dmy;
495  if (wdivmod0(wx, wy, &dmy, &r)) return r;
496 #endif
497  return v2w(modv(w2v(wx), w2v(wy)));
498 }
499 
500 static VALUE
501 num_exact(VALUE v)
502 {
503  VALUE tmp;
504 
505  if (NIL_P(v)) {
506  rb_raise(rb_eTypeError, "can't convert nil into an exact number");
507  }
508  else if (RB_INTEGER_TYPE_P(v)) {
509  return v;
510  }
511  else if (RB_TYPE_P(v, T_RATIONAL)) {
512  goto rational;
513  }
514  else if (RB_TYPE_P(v, T_STRING)) {
515  goto typeerror;
516  }
517  else {
518  if ((tmp = rb_check_funcall(v, idTo_r, 0, NULL)) != Qundef) {
519  /* test to_int method availability to reject non-Numeric
520  * objects such as String, Time, etc which have to_r method. */
521  if (!rb_respond_to(v, idTo_int)) goto typeerror;
522  }
523  else if (!NIL_P(tmp = rb_check_to_int(v))) {
524  return tmp;
525  }
526  else {
527  goto typeerror;
528  }
529  }
530 
531  if (RB_INTEGER_TYPE_P(tmp)) {
532  v = tmp;
533  }
534  else if (RB_TYPE_P(tmp, T_RATIONAL)) {
535  v = tmp;
536  rational:
537  if (RRATIONAL(v)->den == INT2FIX(1))
538  v = RRATIONAL(v)->num;
539  }
540  else {
541  typeerror:
542  rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number",
543  rb_obj_class(v));
544  }
545  return v;
546 }
547 
548 /* time_t */
549 
550 static wideval_t
551 rb_time_magnify(wideval_t w)
552 {
553  return wmul(w, WINT2FIXWV(TIME_SCALE));
554 }
555 
556 static VALUE
557 rb_time_unmagnify_to_rational(wideval_t w)
558 {
559  return quor(w2v(w), INT2FIX(TIME_SCALE));
560 }
561 
562 static wideval_t
563 rb_time_unmagnify(wideval_t w)
564 {
565  return v2w(rb_time_unmagnify_to_rational(w));
566 }
567 
568 static VALUE
569 rb_time_unmagnify_to_float(wideval_t w)
570 {
571  VALUE v;
572 #if WIDEVALUE_IS_WIDER
573  if (FIXWV_P(w)) {
574  wideint_t a, b, c;
575  a = FIXWV2WINT(w);
576  b = TIME_SCALE;
577  c = a / b;
578  if (c * b == a) {
579  return DBL2NUM((double)c);
580  }
581  v = DBL2NUM((double)FIXWV2WINT(w));
582  return quov(v, DBL2NUM(TIME_SCALE));
583  }
584 #endif
585  v = w2v(w);
586  if (RB_TYPE_P(v, T_RATIONAL))
587  return rb_Float(quov(v, INT2FIX(TIME_SCALE)));
588  else
589  return quov(v, DBL2NUM(TIME_SCALE));
590 }
591 
592 static void
593 split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
594 {
595  wideval_t q, r;
596  wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
597  *timew_p = q;
598  *subsecx_p = w2v(r);
599 }
600 
601 static wideval_t
602 timet2wv(time_t t)
603 {
604 #if WIDEVALUE_IS_WIDER
605  if (TIMET_MIN == 0) {
606  uwideint_t wi = (uwideint_t)t;
607  if (wi <= FIXWV_MAX) {
608  return WINT2FIXWV(wi);
609  }
610  }
611  else {
612  wideint_t wi = (wideint_t)t;
613  if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
614  return WINT2FIXWV(wi);
615  }
616  }
617 #endif
618  return v2w(TIMET2NUM(t));
619 }
620 #define TIMET2WV(t) timet2wv(t)
621 
622 static time_t
623 wv2timet(wideval_t w)
624 {
625 #if WIDEVALUE_IS_WIDER
626  if (FIXWV_P(w)) {
627  wideint_t wi = FIXWV2WINT(w);
628  if (TIMET_MIN == 0) {
629  if (wi < 0)
630  rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
631  if (TIMET_MAX < (uwideint_t)wi)
632  rb_raise(rb_eRangeError, "too big to convert into `time_t'");
633  }
634  else {
635  if (wi < TIMET_MIN || TIMET_MAX < wi)
636  rb_raise(rb_eRangeError, "too big to convert into `time_t'");
637  }
638  return (time_t)wi;
639  }
640 #endif
641  return NUM2TIMET(w2v(w));
642 }
643 #define WV2TIMET(t) wv2timet(t)
644 
646 static VALUE rb_cTimeTM;
647 
648 static int obj2int(VALUE obj);
649 static uint32_t obj2ubits(VALUE obj, size_t bits);
650 static VALUE obj2vint(VALUE obj);
651 static uint32_t month_arg(VALUE arg);
652 static VALUE validate_utc_offset(VALUE utc_offset);
653 static VALUE validate_zone_name(VALUE zone_name);
654 static void validate_vtm(struct vtm *vtm);
655 static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx);
656 
657 static VALUE time_gmtime(VALUE);
658 static VALUE time_localtime(VALUE);
659 static VALUE time_fixoff(VALUE);
660 static VALUE time_zonelocal(VALUE time, VALUE off);
661 
662 static time_t timegm_noleapsecond(struct tm *tm);
663 static int tmcmp(struct tm *a, struct tm *b);
664 static int vtmcmp(struct vtm *a, struct vtm *b);
665 static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
666 
667 static struct vtm *localtimew(wideval_t timew, struct vtm *result);
668 
669 static int leap_year_p(long y);
670 #define leap_year_v_p(y) leap_year_p(NUM2LONG(modv((y), INT2FIX(400))))
671 
672 static VALUE tm_from_time(VALUE klass, VALUE time);
673 
675 
676 static void
677 update_tz(void)
678 {
679  if (ruby_tz_uptodate_p) return;
680  ruby_tz_uptodate_p = true;
681  tzset();
682 }
683 
684 static struct tm *
685 rb_localtime_r(const time_t *t, struct tm *result)
686 {
687 #if defined __APPLE__ && defined __LP64__
688  if (*t != (time_t)(int)*t) return NULL;
689 #endif
690  update_tz();
691 #ifdef HAVE_GMTIME_R
692  result = localtime_r(t, result);
693 #else
694  {
695  struct tm *tmp = localtime(t);
696  if (tmp) *result = *tmp;
697  }
698 #endif
699 #if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
700  if (result) {
701  long gmtoff1 = 0;
702  long gmtoff2 = 0;
703  struct tm tmp = *result;
704  time_t t2;
705  t2 = mktime(&tmp);
706 # if defined(HAVE_STRUCT_TM_TM_GMTOFF)
707  gmtoff1 = result->tm_gmtoff;
708  gmtoff2 = tmp.tm_gmtoff;
709 # endif
710  if (*t + gmtoff1 != t2 + gmtoff2)
711  result = NULL;
712  }
713 #endif
714  return result;
715 }
716 #define LOCALTIME(tm, result) rb_localtime_r((tm), &(result))
717 
718 #ifndef HAVE_STRUCT_TM_TM_GMTOFF
719 static struct tm *
720 rb_gmtime_r(const time_t *t, struct tm *result)
721 {
722 #ifdef HAVE_GMTIME_R
723  result = gmtime_r(t, result);
724 #else
725  struct tm *tmp = gmtime(t);
726  if (tmp) *result = *tmp;
727 #endif
728 #if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
729  if (result && *t != timegm(result)) {
730  return NULL;
731  }
732 #endif
733  return result;
734 }
735 # define GMTIME(tm, result) rb_gmtime_r((tm), &(result))
736 #endif
737 
738 static const int common_year_yday_offset[] = {
739  -1,
740  -1 + 31,
741  -1 + 31 + 28,
742  -1 + 31 + 28 + 31,
743  -1 + 31 + 28 + 31 + 30,
744  -1 + 31 + 28 + 31 + 30 + 31,
745  -1 + 31 + 28 + 31 + 30 + 31 + 30,
746  -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
747  -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
748  -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
749  -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
750  -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
751  /* 1 2 3 4 5 6 7 8 9 10 11 */
752 };
753 static const int leap_year_yday_offset[] = {
754  -1,
755  -1 + 31,
756  -1 + 31 + 29,
757  -1 + 31 + 29 + 31,
758  -1 + 31 + 29 + 31 + 30,
759  -1 + 31 + 29 + 31 + 30 + 31,
760  -1 + 31 + 29 + 31 + 30 + 31 + 30,
761  -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
762  -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
763  -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
764  -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
765  -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
766  /* 1 2 3 4 5 6 7 8 9 10 11 */
767 };
768 
769 static const int common_year_days_in_month[] = {
770  31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
771 };
772 static const int leap_year_days_in_month[] = {
773  31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
774 };
775 
776 #define M28(m) \
777  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
778  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
779  (m),(m),(m),(m),(m),(m),(m),(m)
780 #define M29(m) \
781  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
782  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
783  (m),(m),(m),(m),(m),(m),(m),(m),(m)
784 #define M30(m) \
785  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
786  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
787  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m)
788 #define M31(m) \
789  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
790  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
791  (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), (m)
792 
793 static const uint8_t common_year_mon_of_yday[] = {
794  M31(1), M28(2), M31(3), M30(4), M31(5), M30(6),
795  M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
796 };
797 static const uint8_t leap_year_mon_of_yday[] = {
798  M31(1), M29(2), M31(3), M30(4), M31(5), M30(6),
799  M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
800 };
801 
802 #undef M28
803 #undef M29
804 #undef M30
805 #undef M31
806 
807 #define D28 \
808  1,2,3,4,5,6,7,8,9, \
809  10,11,12,13,14,15,16,17,18,19, \
810  20,21,22,23,24,25,26,27,28
811 #define D29 \
812  1,2,3,4,5,6,7,8,9, \
813  10,11,12,13,14,15,16,17,18,19, \
814  20,21,22,23,24,25,26,27,28,29
815 #define D30 \
816  1,2,3,4,5,6,7,8,9, \
817  10,11,12,13,14,15,16,17,18,19, \
818  20,21,22,23,24,25,26,27,28,29,30
819 #define D31 \
820  1,2,3,4,5,6,7,8,9, \
821  10,11,12,13,14,15,16,17,18,19, \
822  20,21,22,23,24,25,26,27,28,29,30,31
823 
824 static const uint8_t common_year_mday_of_yday[] = {
825  /* 1 2 3 4 5 6 7 8 9 10 11 12 */
826  D31, D28, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
827 };
828 static const uint8_t leap_year_mday_of_yday[] = {
829  D31, D29, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
830 };
831 
832 #undef D28
833 #undef D29
834 #undef D30
835 #undef D31
836 
837 static int
838 calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
839 {
840  int tm_year_mod400 = (int)MOD(tm_year, 400);
841  int tm_yday = tm_mday;
842 
843  if (leap_year_p(tm_year_mod400 + 1900))
844  tm_yday += leap_year_yday_offset[tm_mon];
845  else
846  tm_yday += common_year_yday_offset[tm_mon];
847 
848  return tm_yday;
849 }
850 
851 static wideval_t
852 timegmw_noleapsecond(struct vtm *vtm)
853 {
854  VALUE year1900;
855  VALUE q400, r400;
856  int year_mod400;
857  int yday;
858  long days_in400;
859  VALUE vdays, ret;
860  wideval_t wret;
861 
862  year1900 = subv(vtm->year, INT2FIX(1900));
863 
864  divmodv(year1900, INT2FIX(400), &q400, &r400);
865  year_mod400 = NUM2INT(r400);
866 
867  yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
868 
869  /*
870  * `Seconds Since the Epoch' in SUSv3:
871  * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
872  * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
873  * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
874  */
875  ret = LONG2NUM(vtm->sec
876  + vtm->min*60
877  + vtm->hour*3600);
878  days_in400 = yday
879  - 70*365
880  + DIV(year_mod400 - 69, 4)
881  - DIV(year_mod400 - 1, 100)
882  + (year_mod400 + 299) / 400;
883  vdays = LONG2NUM(days_in400);
884  vdays = addv(vdays, mulv(q400, INT2FIX(97)));
885  vdays = addv(vdays, mulv(year1900, INT2FIX(365)));
886  wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
887  wret = wadd(wret, v2w(vtm->subsecx));
888 
889  return wret;
890 }
891 
892 static VALUE
893 zone_str(const char *zone)
894 {
895  const char *p;
896  int ascii_only = 1;
897  VALUE str;
898  size_t len;
899 
900  if (zone == NULL) {
901  return rb_fstring_lit("(NO-TIMEZONE-ABBREVIATION)");
902  }
903 
904  for (p = zone; *p; p++)
905  if (!ISASCII(*p)) {
906  ascii_only = 0;
907  break;
908  }
909  len = p - zone + strlen(p);
910  if (ascii_only) {
912  }
913  else {
915  }
916  return rb_fstring(str);
917 }
918 
919 static void
920 gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
921 {
922  VALUE v;
923  int n, x, y;
924  int wday;
925  VALUE timev;
926  wideval_t timew2, w, w2;
927  VALUE subsecx;
928 
929  vtm->isdst = 0;
930 
931  split_second(timew, &timew2, &subsecx);
932  vtm->subsecx = subsecx;
933 
934  wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
935  timev = w2v(w2);
936  v = w2v(w);
937 
938  wday = NUM2INT(modv(timev, INT2FIX(7)));
939  vtm->wday = (wday + 4) % 7;
940 
941  n = NUM2INT(v);
942  vtm->sec = n % 60; n = n / 60;
943  vtm->min = n % 60; n = n / 60;
944  vtm->hour = n;
945 
946  /* 97 leap days in the 400 year cycle */
947  divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
948  vtm->year = mulv(timev, INT2FIX(400));
949 
950  /* n is the days in the 400 year cycle.
951  * the start of the cycle is 1970-01-01. */
952 
953  n = NUM2INT(v);
954  y = 1970;
955 
956  /* 30 years including 7 leap days (1972, 1976, ... 1996),
957  * 31 days in January 2000 and
958  * 29 days in February 2000
959  * from 1970-01-01 to 2000-02-29 */
960  if (30*365+7+31+29-1 <= n) {
961  /* 2000-02-29 or after */
962  if (n < 31*365+8) {
963  /* 2000-02-29 to 2000-12-31 */
964  y += 30;
965  n -= 30*365+7;
966  goto found;
967  }
968  else {
969  /* 2001-01-01 or after */
970  n -= 1;
971  }
972  }
973 
974  x = n / (365*100 + 24);
975  n = n % (365*100 + 24);
976  y += x * 100;
977  if (30*365+7+31+29-1 <= n) {
978  if (n < 31*365+7) {
979  y += 30;
980  n -= 30*365+7;
981  goto found;
982  }
983  else
984  n += 1;
985  }
986 
987  x = n / (365*4 + 1);
988  n = n % (365*4 + 1);
989  y += x * 4;
990  if (365*2+31+29-1 <= n) {
991  if (n < 365*2+366) {
992  y += 2;
993  n -= 365*2;
994  goto found;
995  }
996  else
997  n -= 1;
998  }
999 
1000  x = n / 365;
1001  n = n % 365;
1002  y += x;
1003 
1004  found:
1005  vtm->yday = n+1;
1006  vtm->year = addv(vtm->year, INT2NUM(y));
1007 
1008  if (leap_year_p(y)) {
1009  vtm->mon = leap_year_mon_of_yday[n];
1010  vtm->mday = leap_year_mday_of_yday[n];
1011  }
1012  else {
1013  vtm->mon = common_year_mon_of_yday[n];
1014  vtm->mday = common_year_mday_of_yday[n];
1015  }
1016 
1017  vtm->utc_offset = INT2FIX(0);
1018  vtm->zone = rb_fstring_lit("UTC");
1019 }
1020 
1021 static struct tm *
1022 gmtime_with_leapsecond(const time_t *timep, struct tm *result)
1023 {
1024 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1025  /* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
1026  struct tm *t;
1027  int sign;
1028  int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
1029  long gmtoff;
1030  t = LOCALTIME(timep, *result);
1031  if (t == NULL)
1032  return NULL;
1033 
1034  /* subtract gmtoff */
1035  if (t->tm_gmtoff < 0) {
1036  sign = 1;
1037  gmtoff = -t->tm_gmtoff;
1038  }
1039  else {
1040  sign = -1;
1041  gmtoff = t->tm_gmtoff;
1042  }
1043  gmtoff_sec = (int)(gmtoff % 60);
1044  gmtoff = gmtoff / 60;
1045  gmtoff_min = (int)(gmtoff % 60);
1046  gmtoff = gmtoff / 60;
1047  gmtoff_hour = (int)gmtoff; /* <= 12 */
1048 
1049  gmtoff_sec *= sign;
1050  gmtoff_min *= sign;
1051  gmtoff_hour *= sign;
1052 
1053  gmtoff_day = 0;
1054 
1055  if (gmtoff_sec) {
1056  /* If gmtoff_sec == 0, don't change result->tm_sec.
1057  * It may be 60 which is a leap second. */
1058  result->tm_sec += gmtoff_sec;
1059  if (result->tm_sec < 0) {
1060  result->tm_sec += 60;
1061  gmtoff_min -= 1;
1062  }
1063  if (60 <= result->tm_sec) {
1064  result->tm_sec -= 60;
1065  gmtoff_min += 1;
1066  }
1067  }
1068  if (gmtoff_min) {
1069  result->tm_min += gmtoff_min;
1070  if (result->tm_min < 0) {
1071  result->tm_min += 60;
1072  gmtoff_hour -= 1;
1073  }
1074  if (60 <= result->tm_min) {
1075  result->tm_min -= 60;
1076  gmtoff_hour += 1;
1077  }
1078  }
1079  if (gmtoff_hour) {
1080  result->tm_hour += gmtoff_hour;
1081  if (result->tm_hour < 0) {
1082  result->tm_hour += 24;
1083  gmtoff_day = -1;
1084  }
1085  if (24 <= result->tm_hour) {
1086  result->tm_hour -= 24;
1087  gmtoff_day = 1;
1088  }
1089  }
1090 
1091  if (gmtoff_day) {
1092  if (gmtoff_day < 0) {
1093  if (result->tm_yday == 0) {
1094  result->tm_mday = 31;
1095  result->tm_mon = 11; /* December */
1096  result->tm_year--;
1097  result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
1098  }
1099  else if (result->tm_mday == 1) {
1100  const int *days_in_month = leap_year_p(result->tm_year + 1900) ?
1101  leap_year_days_in_month :
1102  common_year_days_in_month;
1103  result->tm_mon--;
1104  result->tm_mday = days_in_month[result->tm_mon];
1105  result->tm_yday--;
1106  }
1107  else {
1108  result->tm_mday--;
1109  result->tm_yday--;
1110  }
1111  result->tm_wday = (result->tm_wday + 6) % 7;
1112  }
1113  else {
1114  int leap = leap_year_p(result->tm_year + 1900);
1115  if (result->tm_yday == (leap ? 365 : 364)) {
1116  result->tm_year++;
1117  result->tm_mon = 0; /* January */
1118  result->tm_mday = 1;
1119  result->tm_yday = 0;
1120  }
1121  else if (result->tm_mday == (leap ? leap_year_days_in_month :
1122  common_year_days_in_month)[result->tm_mon]) {
1123  result->tm_mon++;
1124  result->tm_mday = 1;
1125  result->tm_yday++;
1126  }
1127  else {
1128  result->tm_mday++;
1129  result->tm_yday++;
1130  }
1131  result->tm_wday = (result->tm_wday + 1) % 7;
1132  }
1133  }
1134  result->tm_isdst = 0;
1135  result->tm_gmtoff = 0;
1136 #if defined(HAVE_TM_ZONE)
1137  result->tm_zone = (char *)"UTC";
1138 #endif
1139  return result;
1140 #else
1141  return GMTIME(timep, *result);
1142 #endif
1143 }
1144 
1145 static long this_year = 0;
1146 static time_t known_leap_seconds_limit;
1147 static int number_of_leap_seconds_known;
1148 
1149 static void
1150 init_leap_second_info(void)
1151 {
1152  /*
1153  * leap seconds are determined by IERS.
1154  * It is announced 6 months before the leap second.
1155  * So no one knows leap seconds in the future after the next year.
1156  */
1157  if (this_year == 0) {
1158  time_t now;
1159  struct tm *tm, result;
1160  struct vtm vtm;
1161  wideval_t timew;
1162  now = time(NULL);
1163  gmtime(&now);
1164  tm = gmtime_with_leapsecond(&now, &result);
1165  if (!tm) return;
1166  this_year = tm->tm_year;
1167 
1168  if (TIMET_MAX - now < (time_t)(366*86400))
1169  known_leap_seconds_limit = TIMET_MAX;
1170  else
1171  known_leap_seconds_limit = now + (time_t)(366*86400);
1172 
1173  if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
1174  return;
1175 
1176  vtm.year = LONG2NUM(result.tm_year + 1900);
1177  vtm.mon = result.tm_mon + 1;
1178  vtm.mday = result.tm_mday;
1179  vtm.hour = result.tm_hour;
1180  vtm.min = result.tm_min;
1181  vtm.sec = result.tm_sec;
1182  vtm.subsecx = INT2FIX(0);
1183  vtm.utc_offset = INT2FIX(0);
1184 
1185  timew = timegmw_noleapsecond(&vtm);
1186 
1187  number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
1188  }
1189 }
1190 
1191 /* Use this if you want to re-run init_leap_second_info() */
1192 void
1194 {
1195  this_year = 0;
1196 }
1197 
1198 static wideval_t
1199 timegmw(struct vtm *vtm)
1200 {
1201  wideval_t timew;
1202  struct tm tm;
1203  time_t t;
1204  const char *errmsg;
1205 
1206  /* The first leap second is 1972-06-30 23:59:60 UTC.
1207  * No leap seconds before. */
1208  if (gt(INT2FIX(1972), vtm->year))
1209  return timegmw_noleapsecond(vtm);
1210 
1211  init_leap_second_info();
1212 
1213  timew = timegmw_noleapsecond(vtm);
1214 
1215 
1216  if (number_of_leap_seconds_known == 0) {
1217  /* When init_leap_second_info() is executed, the timezone doesn't have
1218  * leap second information. Disable leap second for calculating gmtime.
1219  */
1220  return timew;
1221  }
1222  else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1223  return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1224  }
1225 
1226  tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
1227  tm.tm_mon = vtm->mon - 1;
1228  tm.tm_mday = vtm->mday;
1229  tm.tm_hour = vtm->hour;
1230  tm.tm_min = vtm->min;
1231  tm.tm_sec = vtm->sec;
1232  tm.tm_isdst = 0;
1233 
1234  errmsg = find_time_t(&tm, 1, &t);
1235  if (errmsg)
1236  rb_raise(rb_eArgError, "%s", errmsg);
1237  return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1238 }
1239 
1240 static struct vtm *
1241 gmtimew(wideval_t timew, struct vtm *result)
1242 {
1243  time_t t;
1244  struct tm tm;
1245  VALUE subsecx;
1246  wideval_t timew2;
1247 
1248  if (wlt(timew, WINT2FIXWV(0))) {
1249  gmtimew_noleapsecond(timew, result);
1250  return result;
1251  }
1252 
1253  init_leap_second_info();
1254 
1255  if (number_of_leap_seconds_known == 0) {
1256  /* When init_leap_second_info() is executed, the timezone doesn't have
1257  * leap second information. Disable leap second for calculating gmtime.
1258  */
1259  gmtimew_noleapsecond(timew, result);
1260  return result;
1261  }
1262  else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1263  timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1264  gmtimew_noleapsecond(timew, result);
1265  return result;
1266  }
1267 
1268  split_second(timew, &timew2, &subsecx);
1269 
1270  t = WV2TIMET(timew2);
1271  if (!gmtime_with_leapsecond(&t, &tm))
1272  return NULL;
1273 
1274  result->year = LONG2NUM((long)tm.tm_year + 1900);
1275  result->mon = tm.tm_mon + 1;
1276  result->mday = tm.tm_mday;
1277  result->hour = tm.tm_hour;
1278  result->min = tm.tm_min;
1279  result->sec = tm.tm_sec;
1280  result->subsecx = subsecx;
1281  result->utc_offset = INT2FIX(0);
1282  result->wday = tm.tm_wday;
1283  result->yday = tm.tm_yday+1;
1284  result->isdst = tm.tm_isdst;
1285 #if 0
1286  result->zone = rb_fstring_lit("UTC");
1287 #endif
1288 
1289  return result;
1290 }
1291 
1292 #define GMTIMEW(w, v) \
1293  (gmtimew(w, v) ? (void)0 : rb_raise(rb_eArgError, "gmtime error"))
1294 
1295 static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone);
1296 
1297 /*
1298  * The idea is borrowed from Perl:
1299  * http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml
1300  *
1301  * compat_common_month_table is generated by the following program.
1302  * This table finds the last month which starts at the same day of a week.
1303  * The year 2037 is not used because:
1304  * http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
1305  *
1306  * #!/usr/bin/ruby
1307  *
1308  * require 'date'
1309  *
1310  * h = {}
1311  * 2036.downto(2010) {|y|
1312  * 1.upto(12) {|m|
1313  * next if m == 2 && y % 4 == 0
1314  * d = Date.new(y,m,1)
1315  * h[m] ||= {}
1316  * h[m][d.wday] ||= y
1317  * }
1318  * }
1319  *
1320  * 1.upto(12) {|m|
1321  * print "{"
1322  * 0.upto(6) {|w|
1323  * y = h[m][w]
1324  * print " #{y},"
1325  * }
1326  * puts "},"
1327  * }
1328  *
1329  */
1330 static const int compat_common_month_table[12][7] = {
1331  /* Sun Mon Tue Wed Thu Fri Sat */
1332  { 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
1333  { 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
1334  { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
1335  { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
1336  { 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
1337  { 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
1338  { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
1339  { 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
1340  { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
1341  { 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
1342  { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
1343  { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
1344 };
1345 
1346 /*
1347  * compat_leap_month_table is generated by following program.
1348  *
1349  * #!/usr/bin/ruby
1350  *
1351  * require 'date'
1352  *
1353  * h = {}
1354  * 2037.downto(2010) {|y|
1355  * 1.upto(12) {|m|
1356  * next unless m == 2 && y % 4 == 0
1357  * d = Date.new(y,m,1)
1358  * h[m] ||= {}
1359  * h[m][d.wday] ||= y
1360  * }
1361  * }
1362  *
1363  * 2.upto(2) {|m|
1364  * 0.upto(6) {|w|
1365  * y = h[m][w]
1366  * print " #{y},"
1367  * }
1368  * puts
1369  * }
1370  */
1371 static const int compat_leap_month_table[7] = {
1372 /* Sun Mon Tue Wed Thu Fri Sat */
1373  2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
1374 };
1375 
1376 static int
1377 calc_wday(int year_mod400, int month, int day)
1378 {
1379  int a, y, m;
1380  int wday;
1381 
1382  a = (14 - month) / 12;
1383  y = year_mod400 + 4800 - a;
1384  m = month + 12 * a - 3;
1385  wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
1386  wday = wday % 7;
1387  return wday;
1388 }
1389 
1390 static VALUE
1391 guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, VALUE *zone_ret)
1392 {
1393  struct tm tm;
1394  long gmtoff;
1395  VALUE zone;
1396  time_t t;
1397  struct vtm vtm2;
1398  VALUE timev;
1399  int year_mod400, wday;
1400 
1401  /* Daylight Saving Time was introduced in 1916.
1402  * So we don't need to care about DST before that. */
1403  if (lt(vtm_utc->year, INT2FIX(1916))) {
1404  VALUE off = INT2FIX(0);
1405  int isdst = 0;
1406  zone = rb_fstring_lit("UTC");
1407 
1408 # if defined(NEGATIVE_TIME_T)
1409 # if SIZEOF_TIME_T <= 4
1410  /* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
1411 # define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
1412 # else
1413  /* Since the Royal Greenwich Observatory was commissioned in 1675,
1414  no timezone defined using GMT at 1600. */
1415 # define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
1416 # endif
1417  if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
1418  off = LONG2FIX(gmtoff);
1419  isdst = tm.tm_isdst;
1420  }
1421  else
1422 # endif
1423  /* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
1424  if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
1425  off = LONG2FIX(gmtoff);
1426  isdst = tm.tm_isdst;
1427  }
1428 
1429  if (isdst_ret)
1430  *isdst_ret = isdst;
1431  if (zone_ret)
1432  *zone_ret = zone;
1433  return off;
1434  }
1435 
1436  /* It is difficult to guess the future. */
1437 
1438  vtm2 = *vtm_utc;
1439 
1440  /* guess using a year before 2038. */
1441  year_mod400 = NUM2INT(modv(vtm_utc->year, INT2FIX(400)));
1442  wday = calc_wday(year_mod400, vtm_utc->mon, 1);
1443  if (vtm_utc->mon == 2 && leap_year_p(year_mod400))
1444  vtm2.year = INT2FIX(compat_leap_month_table[wday]);
1445  else
1446  vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
1447 
1448  timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
1449  t = NUM2TIMET(timev);
1450  zone = rb_fstring_lit("UTC");
1451  if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1452  if (isdst_ret)
1453  *isdst_ret = tm.tm_isdst;
1454  if (zone_ret)
1455  *zone_ret = zone;
1456  return LONG2FIX(gmtoff);
1457  }
1458 
1459  {
1460  /* Use the current time offset as a last resort. */
1461  static time_t now = 0;
1462  static long now_gmtoff = 0;
1463  static int now_isdst = 0;
1464  static VALUE now_zone;
1465  if (now == 0) {
1466  VALUE zone;
1467  now = time(NULL);
1468  localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &zone);
1469  now_isdst = tm.tm_isdst;
1470  zone = rb_fstring(zone);
1472  now_zone = zone;
1473  }
1474  if (isdst_ret)
1475  *isdst_ret = now_isdst;
1476  if (zone_ret)
1477  *zone_ret = now_zone;
1478  return LONG2FIX(now_gmtoff);
1479  }
1480 }
1481 
1482 static VALUE
1483 small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
1484 {
1485  int off;
1486 
1487  off = vtm1->sec - vtm2->sec;
1488  off += (vtm1->min - vtm2->min) * 60;
1489  off += (vtm1->hour - vtm2->hour) * 3600;
1490  if (ne(vtm1->year, vtm2->year))
1491  off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
1492  else if (vtm1->mon != vtm2->mon)
1493  off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
1494  else if (vtm1->mday != vtm2->mday)
1495  off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
1496 
1497  return INT2FIX(off);
1498 }
1499 
1500 static wideval_t
1501 timelocalw(struct vtm *vtm)
1502 {
1503  time_t t;
1504  struct tm tm;
1505  VALUE v;
1506  wideval_t timew1, timew2;
1507  struct vtm vtm1, vtm2;
1508  int n;
1509 
1510  if (FIXNUM_P(vtm->year)) {
1511  long l = FIX2LONG(vtm->year) - 1900;
1512  if (l < INT_MIN || INT_MAX < l)
1513  goto no_localtime;
1514  tm.tm_year = (int)l;
1515  }
1516  else {
1517  v = subv(vtm->year, INT2FIX(1900));
1518  if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
1519  goto no_localtime;
1520  tm.tm_year = NUM2INT(v);
1521  }
1522 
1523  tm.tm_mon = vtm->mon-1;
1524  tm.tm_mday = vtm->mday;
1525  tm.tm_hour = vtm->hour;
1526  tm.tm_min = vtm->min;
1527  tm.tm_sec = vtm->sec;
1528  tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst;
1529 
1530  if (find_time_t(&tm, 0, &t))
1531  goto no_localtime;
1532  return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1533 
1534  no_localtime:
1535  timew1 = timegmw(vtm);
1536 
1537  if (!localtimew(timew1, &vtm1))
1538  rb_raise(rb_eArgError, "localtimew error");
1539 
1540  n = vtmcmp(vtm, &vtm1);
1541  if (n == 0) {
1542  timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
1543  if (!localtimew(timew1, &vtm1))
1544  rb_raise(rb_eArgError, "localtimew error");
1545  n = 1;
1546  }
1547 
1548  if (n < 0) {
1549  timew2 = timew1;
1550  vtm2 = vtm1;
1551  timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1552  if (!localtimew(timew1, &vtm1))
1553  rb_raise(rb_eArgError, "localtimew error");
1554  }
1555  else {
1556  timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1557  if (!localtimew(timew2, &vtm2))
1558  rb_raise(rb_eArgError, "localtimew error");
1559  }
1560  timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
1561  timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
1562 
1563  if (weq(timew1, timew2))
1564  return timew1;
1565 
1566  if (!localtimew(timew1, &vtm1))
1567  rb_raise(rb_eArgError, "localtimew error");
1568  if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
1569  return timew2;
1570 
1571  if (!localtimew(timew2, &vtm2))
1572  rb_raise(rb_eArgError, "localtimew error");
1573  if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
1574  return timew1;
1575 
1576  if (vtm->isdst)
1577  return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
1578  else
1579  return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
1580 }
1581 
1582 static struct tm *
1583 localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone)
1584 {
1585  struct tm tm;
1586 
1587  if (LOCALTIME(t, tm)) {
1588 #if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1589  *gmtoff = tm.tm_gmtoff;
1590 #else
1591  struct tm *u, *l;
1592  long off;
1593  struct tm tmbuf;
1594  l = &tm;
1595  u = GMTIME(t, tmbuf);
1596  if (!u)
1597  return NULL;
1598  if (l->tm_year != u->tm_year)
1599  off = l->tm_year < u->tm_year ? -1 : 1;
1600  else if (l->tm_mon != u->tm_mon)
1601  off = l->tm_mon < u->tm_mon ? -1 : 1;
1602  else if (l->tm_mday != u->tm_mday)
1603  off = l->tm_mday < u->tm_mday ? -1 : 1;
1604  else
1605  off = 0;
1606  off = off * 24 + l->tm_hour - u->tm_hour;
1607  off = off * 60 + l->tm_min - u->tm_min;
1608  off = off * 60 + l->tm_sec - u->tm_sec;
1609  *gmtoff = off;
1610 #endif
1611 
1612  if (zone) {
1613 #if defined(HAVE_TM_ZONE)
1614  *zone = zone_str(tm.tm_zone);
1615 #elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
1616 # if RUBY_MSVCRT_VERSION >= 140
1617 # define tzname _tzname
1618 # define daylight _daylight
1619 # endif
1620  /* this needs tzset or localtime, instead of localtime_r */
1621  *zone = zone_str(tzname[daylight && tm.tm_isdst]);
1622 #else
1623  {
1624  char buf[64];
1625  strftime(buf, sizeof(buf), "%Z", &tm);
1626  *zone = zone_str(buf);
1627  }
1628 #endif
1629  }
1630 
1631  *result = tm;
1632  return result;
1633  }
1634  return NULL;
1635 }
1636 
1637 static int
1638 timew_out_of_timet_range(wideval_t timew)
1639 {
1640  VALUE timexv;
1641 #if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
1642  if (FIXWV_P(timew)) {
1643  wideint_t t = FIXWV2WINT(timew);
1644  if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
1645  TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
1646  return 1;
1647  return 0;
1648  }
1649 #endif
1650 #if SIZEOF_TIME_T == SIZEOF_INT64_T
1651  if (FIXWV_P(timew)) {
1652  wideint_t t = FIXWV2WINT(timew);
1653  if (~(time_t)0 <= 0) {
1654  return 0;
1655  }
1656  else {
1657  if (t < 0)
1658  return 1;
1659  return 0;
1660  }
1661  }
1662 #endif
1663  timexv = w2v(timew);
1664  if (lt(timexv, mulv(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
1665  le(mulv(INT2FIX(TIME_SCALE), addv(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
1666  return 1;
1667  return 0;
1668 }
1669 
1670 static struct vtm *
1671 localtimew(wideval_t timew, struct vtm *result)
1672 {
1673  VALUE subsecx, offset;
1674  VALUE zone;
1675  int isdst;
1676 
1677  if (!timew_out_of_timet_range(timew)) {
1678  time_t t;
1679  struct tm tm;
1680  long gmtoff;
1681  wideval_t timew2;
1682 
1683  split_second(timew, &timew2, &subsecx);
1684 
1685  t = WV2TIMET(timew2);
1686 
1687  if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1688  result->year = LONG2NUM((long)tm.tm_year + 1900);
1689  result->mon = tm.tm_mon + 1;
1690  result->mday = tm.tm_mday;
1691  result->hour = tm.tm_hour;
1692  result->min = tm.tm_min;
1693  result->sec = tm.tm_sec;
1694  result->subsecx = subsecx;
1695  result->wday = tm.tm_wday;
1696  result->yday = tm.tm_yday+1;
1697  result->isdst = tm.tm_isdst;
1698  result->utc_offset = LONG2NUM(gmtoff);
1699  result->zone = zone;
1700  return result;
1701  }
1702  }
1703 
1704  if (!gmtimew(timew, result))
1705  return NULL;
1706 
1707  offset = guess_local_offset(result, &isdst, &zone);
1708 
1709  if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
1710  return NULL;
1711 
1712  result->utc_offset = offset;
1713  result->isdst = isdst;
1714  result->zone = zone;
1715 
1716  return result;
1717 }
1718 
1719 #define TIME_TZMODE_LOCALTIME 0
1720 #define TIME_TZMODE_UTC 1
1721 #define TIME_TZMODE_FIXOFF 2
1722 #define TIME_TZMODE_UNINITIALIZED 3
1723 
1724 PACKED_STRUCT_UNALIGNED(struct time_object {
1725  wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */
1726  struct vtm vtm;
1727  unsigned int tzmode:3; /* 0:localtime 1:utc 2:fixoff 3:uninitialized */
1728  unsigned int tm_got:1;
1729 });
1730 
1731 #define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj))
1732 #define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj))
1733 
1734 #define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
1735 #define TIME_INIT_P(tobj) ((tobj)->tzmode != TIME_TZMODE_UNINITIALIZED)
1736 
1737 #define TZMODE_UTC_P(tobj) ((tobj)->tzmode == TIME_TZMODE_UTC)
1738 #define TZMODE_SET_UTC(tobj) ((tobj)->tzmode = TIME_TZMODE_UTC)
1739 
1740 #define TZMODE_LOCALTIME_P(tobj) ((tobj)->tzmode == TIME_TZMODE_LOCALTIME)
1741 #define TZMODE_SET_LOCALTIME(tobj) ((tobj)->tzmode = TIME_TZMODE_LOCALTIME)
1742 
1743 #define TZMODE_FIXOFF_P(tobj) ((tobj)->tzmode == TIME_TZMODE_FIXOFF)
1744 #define TZMODE_SET_FIXOFF(tobj, off) \
1745  ((tobj)->tzmode = TIME_TZMODE_FIXOFF, \
1746  (tobj)->vtm.utc_offset = (off))
1747 
1748 #define TZMODE_COPY(tobj1, tobj2) \
1749  ((tobj1)->tzmode = (tobj2)->tzmode, \
1750  (tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
1751  (tobj1)->vtm.zone = (tobj2)->vtm.zone)
1752 
1753 static VALUE time_get_tm(VALUE, struct time_object *);
1754 #define MAKE_TM(time, tobj) \
1755  do { \
1756  if ((tobj)->tm_got == 0) { \
1757  time_get_tm((time), (tobj)); \
1758  } \
1759  } while (0)
1760 
1761 static void
1762 time_mark(void *ptr)
1763 {
1764  struct time_object *tobj = ptr;
1765  if (!FIXWV_P(tobj->timew))
1766  rb_gc_mark(w2v(tobj->timew));
1767  rb_gc_mark(tobj->vtm.year);
1768  rb_gc_mark(tobj->vtm.subsecx);
1769  rb_gc_mark(tobj->vtm.utc_offset);
1770  rb_gc_mark(tobj->vtm.zone);
1771 }
1772 
1773 static size_t
1774 time_memsize(const void *tobj)
1775 {
1776  return sizeof(struct time_object);
1777 }
1778 
1779 static const rb_data_type_t time_data_type = {
1780  "time",
1781  {time_mark, RUBY_TYPED_DEFAULT_FREE, time_memsize,},
1783 };
1784 
1785 static VALUE
1786 time_s_alloc(VALUE klass)
1787 {
1788  VALUE obj;
1789  struct time_object *tobj;
1790 
1791  obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
1792  tobj->tzmode = TIME_TZMODE_UNINITIALIZED;
1793  tobj->tm_got=0;
1794  tobj->timew = WINT2FIXWV(0);
1795  tobj->vtm.zone = Qnil;
1796 
1797  return obj;
1798 }
1799 
1800 static struct time_object *
1801 get_timeval(VALUE obj)
1802 {
1803  struct time_object *tobj;
1804  TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1805  if (!TIME_INIT_P(tobj)) {
1806  rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj));
1807  }
1808  return tobj;
1809 }
1810 
1811 static struct time_object *
1812 get_new_timeval(VALUE obj)
1813 {
1814  struct time_object *tobj;
1815  TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1816  if (TIME_INIT_P(tobj)) {
1817  rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj));
1818  }
1819  return tobj;
1820 }
1821 
1822 static void
1823 time_modify(VALUE time)
1824 {
1826 }
1827 
1828 static wideval_t
1829 timespec2timew(struct timespec *ts)
1830 {
1831  wideval_t timew;
1832 
1833  timew = rb_time_magnify(TIMET2WV(ts->tv_sec));
1834  if (ts->tv_nsec)
1835  timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000));
1836  return timew;
1837 }
1838 
1839 static struct timespec
1840 timew2timespec(wideval_t timew)
1841 {
1842  VALUE subsecx;
1843  struct timespec ts;
1844  wideval_t timew2;
1845 
1846  if (timew_out_of_timet_range(timew))
1847  rb_raise(rb_eArgError, "time out of system range");
1848  split_second(timew, &timew2, &subsecx);
1849  ts.tv_sec = WV2TIMET(timew2);
1850  ts.tv_nsec = NUM2LONG(mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
1851  return ts;
1852 }
1853 
1854 static struct timespec *
1855 timew2timespec_exact(wideval_t timew, struct timespec *ts)
1856 {
1857  VALUE subsecx;
1858  wideval_t timew2;
1859  VALUE nsecv;
1860 
1861  if (timew_out_of_timet_range(timew))
1862  return NULL;
1863  split_second(timew, &timew2, &subsecx);
1864  ts->tv_sec = WV2TIMET(timew2);
1865  nsecv = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
1866  if (!FIXNUM_P(nsecv))
1867  return NULL;
1868  ts->tv_nsec = NUM2LONG(nsecv);
1869  return ts;
1870 }
1871 
1872 void
1874 {
1875 #ifdef HAVE_CLOCK_GETTIME
1876  if (clock_gettime(CLOCK_REALTIME, ts) == -1) {
1877  rb_sys_fail("clock_gettime");
1878  }
1879 #else
1880  {
1881  struct timeval tv;
1882  if (gettimeofday(&tv, 0) < 0) {
1883  rb_sys_fail("gettimeofday");
1884  }
1885  ts->tv_sec = tv.tv_sec;
1886  ts->tv_nsec = tv.tv_usec * 1000;
1887  }
1888 #endif
1889 }
1890 
1891 static VALUE
1892 time_init_0(VALUE time)
1893 {
1894  struct time_object *tobj;
1895  struct timespec ts;
1896 
1897  time_modify(time);
1898  GetNewTimeval(time, tobj);
1899  tobj->tzmode = TIME_TZMODE_LOCALTIME;
1900  tobj->tm_got=0;
1901  tobj->timew = WINT2FIXWV(0);
1902  rb_timespec_now(&ts);
1903  tobj->timew = timespec2timew(&ts);
1904 
1905  return time;
1906 }
1907 
1908 static VALUE
1909 time_set_utc_offset(VALUE time, VALUE off)
1910 {
1911  struct time_object *tobj;
1912  off = num_exact(off);
1913 
1914  time_modify(time);
1915  GetTimeval(time, tobj);
1916 
1917  tobj->tm_got = 0;
1918  tobj->vtm.zone = Qnil;
1919  TZMODE_SET_FIXOFF(tobj, off);
1920 
1921  return time;
1922 }
1923 
1924 static void
1925 vtm_add_offset(struct vtm *vtm, VALUE off, int sign)
1926 {
1927  VALUE subsec, v;
1928  int sec, min, hour;
1929  int day;
1930 
1931  if (lt(off, INT2FIX(0))) {
1932  sign = -sign;
1933  off = neg(off);
1934  }
1935  divmodv(off, INT2FIX(1), &off, &subsec);
1936  divmodv(off, INT2FIX(60), &off, &v);
1937  sec = NUM2INT(v);
1938  divmodv(off, INT2FIX(60), &off, &v);
1939  min = NUM2INT(v);
1940  divmodv(off, INT2FIX(24), &off, &v);
1941  hour = NUM2INT(v);
1942 
1943  if (sign < 0) {
1944  subsec = neg(subsec);
1945  sec = -sec;
1946  min = -min;
1947  hour = -hour;
1948  }
1949 
1950  day = 0;
1951 
1952  if (!rb_equal(subsec, INT2FIX(0))) {
1953  vtm->subsecx = addv(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
1954  if (lt(vtm->subsecx, INT2FIX(0))) {
1955  vtm->subsecx = addv(vtm->subsecx, INT2FIX(TIME_SCALE));
1956  sec -= 1;
1957  }
1958  if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
1959  vtm->subsecx = subv(vtm->subsecx, INT2FIX(TIME_SCALE));
1960  sec += 1;
1961  }
1962  goto not_zero_sec;
1963  }
1964  if (sec) {
1965  not_zero_sec:
1966  /* If sec + subsec == 0, don't change vtm->sec.
1967  * It may be 60 which is a leap second. */
1968  sec += vtm->sec;
1969  if (sec < 0) {
1970  sec += 60;
1971  min -= 1;
1972  }
1973  if (60 <= sec) {
1974  sec -= 60;
1975  min += 1;
1976  }
1977  vtm->sec = sec;
1978  }
1979  if (min) {
1980  min += vtm->min;
1981  if (min < 0) {
1982  min += 60;
1983  hour -= 1;
1984  }
1985  if (60 <= min) {
1986  min -= 60;
1987  hour += 1;
1988  }
1989  vtm->min = min;
1990  }
1991  if (hour) {
1992  hour += vtm->hour;
1993  if (hour < 0) {
1994  hour += 24;
1995  day = -1;
1996  }
1997  if (24 <= hour) {
1998  hour -= 24;
1999  day = 1;
2000  }
2001  vtm->hour = hour;
2002  }
2003 
2004  if (day) {
2005  if (day < 0) {
2006  if (vtm->mon == 1 && vtm->mday == 1) {
2007  vtm->mday = 31;
2008  vtm->mon = 12; /* December */
2009  vtm->year = subv(vtm->year, INT2FIX(1));
2010  vtm->yday = leap_year_v_p(vtm->year) ? 366 : 365;
2011  }
2012  else if (vtm->mday == 1) {
2013  const int *days_in_month = leap_year_v_p(vtm->year) ?
2014  leap_year_days_in_month :
2015  common_year_days_in_month;
2016  vtm->mon--;
2017  vtm->mday = days_in_month[vtm->mon-1];
2018  vtm->yday--;
2019  }
2020  else {
2021  vtm->mday--;
2022  vtm->yday--;
2023  }
2024  vtm->wday = (vtm->wday + 6) % 7;
2025  }
2026  else {
2027  int leap = leap_year_v_p(vtm->year);
2028  if (vtm->mon == 12 && vtm->mday == 31) {
2029  vtm->year = addv(vtm->year, INT2FIX(1));
2030  vtm->mon = 1; /* January */
2031  vtm->mday = 1;
2032  vtm->yday = 1;
2033  }
2034  else if (vtm->mday == (leap ? leap_year_days_in_month :
2035  common_year_days_in_month)[vtm->mon-1]) {
2036  vtm->mon++;
2037  vtm->mday = 1;
2038  vtm->yday++;
2039  }
2040  else {
2041  vtm->mday++;
2042  vtm->yday++;
2043  }
2044  vtm->wday = (vtm->wday + 1) % 7;
2045  }
2046  }
2047 }
2048 
2049 static int
2050 maybe_tzobj_p(VALUE obj)
2051 {
2052  if (NIL_P(obj)) return FALSE;
2053  if (RB_INTEGER_TYPE_P(obj)) return FALSE;
2054  if (RB_TYPE_P(obj, T_STRING)) return FALSE;
2055  return TRUE;
2056 }
2057 
2058 NORETURN(static void invalid_utc_offset(void));
2059 static void
2060 invalid_utc_offset(void)
2061 {
2062  static const char message[] = "\"+HH:MM\", \"-HH:MM\", \"UTC\" "
2063  "or \"A\"..\"I\",\"K\"..\"Z\" expected for utc_offset";
2064  VALUE str = rb_usascii_str_new_static(message, sizeof(message)-1);
2066 }
2067 
2068 static VALUE
2069 utc_offset_arg(VALUE arg)
2070 {
2071  VALUE tmp;
2072  if (!NIL_P(tmp = rb_check_string_type(arg))) {
2073  int n = 0;
2074  char *s = RSTRING_PTR(tmp);
2075  if (!rb_enc_str_asciicompat_p(tmp)) {
2076  invalid_utc_offset:
2077  return Qnil;
2078  }
2079  switch (RSTRING_LEN(tmp)) {
2080  case 1:
2081  if (s[0] == 'Z') {
2082  return UTC_ZONE;
2083  }
2084  /* Military Time Zone Names */
2085  if (s[0] >= 'A' && s[0] <= 'I') {
2086  n = (int)s[0] - 'A' + 1;
2087  }
2088  else if (s[0] >= 'K' && s[0] <= 'M') {
2089  n = (int)s[0] - 'A';
2090  }
2091  else if (s[0] >= 'N' && s[0] <= 'Y') {
2092  n = 'M' - (int)s[0];
2093  }
2094  else {
2095  goto invalid_utc_offset;
2096  }
2097  n *= 3600;
2098  return INT2FIX(n);
2099  case 3:
2100  if (STRNCASECMP("UTC", s, 3) == 0) {
2101  return UTC_ZONE;
2102  }
2103  goto invalid_utc_offset;
2104  case 9:
2105  if (s[6] != ':') goto invalid_utc_offset;
2106  if (!ISDIGIT(s[7]) || !ISDIGIT(s[8])) goto invalid_utc_offset;
2107  n += (s[7] * 10 + s[8] - '0' * 11);
2108  /* fall through */
2109  case 6:
2110  if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
2111  if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset;
2112  if (s[3] != ':') goto invalid_utc_offset;
2113  if (!ISDIGIT(s[4]) || !ISDIGIT(s[5])) goto invalid_utc_offset;
2114  if (s[4] > '5') goto invalid_utc_offset;
2115  break;
2116  default:
2117  goto invalid_utc_offset;
2118  }
2119  n += (s[1] * 10 + s[2] - '0' * 11) * 3600;
2120  n += (s[4] * 10 + s[5] - '0' * 11) * 60;
2121  if (s[0] == '-')
2122  n = -n;
2123  return INT2FIX(n);
2124  }
2125  else {
2126  return num_exact(arg);
2127  }
2128 }
2129 
2130 static void
2131 zone_set_offset(VALUE zone, struct time_object *tobj,
2132  wideval_t tlocal, wideval_t tutc)
2133 {
2134  /* tlocal and tutc must be unmagnified and in seconds */
2135  wideval_t w = wsub(tlocal, tutc);
2136  VALUE off = w2v(w);
2137  validate_utc_offset(off);
2138  tobj->vtm.utc_offset = off;
2139  tobj->vtm.zone = zone;
2140  tobj->tzmode = TIME_TZMODE_LOCALTIME;
2141 }
2142 
2143 static wideval_t
2144 extract_time(VALUE time)
2145 {
2146  wideval_t t;
2147  const ID id_to_i = idTo_i;
2148 
2149 #define EXTRACT_TIME() do { \
2150  t = v2w(rb_Integer(AREF(to_i))); \
2151  } while (0)
2152 
2153  if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2154  struct time_object *tobj = DATA_PTR(time);
2155 
2156  time_gmtime(time); /* ensure tm got */
2157  t = rb_time_unmagnify(tobj->timew);
2158  }
2159  else if (RB_TYPE_P(time, T_STRUCT)) {
2160 #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2161  EXTRACT_TIME();
2162 #undef AREF
2163  }
2164  else {
2165 #define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2166  EXTRACT_TIME();
2167 #undef AREF
2168  }
2169 #undef EXTRACT_TIME
2170 
2171  return t;
2172 }
2173 
2174 static wideval_t
2175 extract_vtm(VALUE time, struct vtm *vtm, VALUE subsecx)
2176 {
2177  wideval_t t;
2178  const ID id_to_i = idTo_i;
2179 
2180 #define EXTRACT_VTM() do { \
2181  VALUE subsecx; \
2182  vtm->year = obj2vint(AREF(year)); \
2183  vtm->mon = month_arg(AREF(mon)); \
2184  vtm->mday = obj2ubits(AREF(mday), 5); \
2185  vtm->hour = obj2ubits(AREF(hour), 5); \
2186  vtm->min = obj2ubits(AREF(min), 6); \
2187  vtm->sec = obj2subsecx(AREF(sec), &subsecx); \
2188  vtm->isdst = RTEST(AREF(isdst)); \
2189  vtm->utc_offset = Qnil; \
2190  t = v2w(rb_Integer(AREF(to_i))); \
2191  } while (0)
2192 
2193  if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2194  struct time_object *tobj = DATA_PTR(time);
2195 
2196  time_get_tm(time, tobj);
2197  *vtm = tobj->vtm;
2198  t = rb_time_unmagnify(tobj->timew);
2199  if (TZMODE_FIXOFF_P(tobj) && vtm->utc_offset != INT2FIX(0))
2200  t = wadd(t, v2w(vtm->utc_offset));
2201  }
2202  else if (RB_TYPE_P(time, T_STRUCT)) {
2203 #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2204  EXTRACT_VTM();
2205 #undef AREF
2206  }
2207  else if (rb_integer_type_p(time)) {
2208  t = v2w(time);
2209  GMTIMEW(rb_time_magnify(t), vtm);
2210  }
2211  else {
2212 #define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2213  EXTRACT_VTM();
2214 #undef AREF
2215  }
2216 #undef EXTRACT_VTM
2217  vtm->subsecx = subsecx;
2218  validate_vtm(vtm);
2219  return t;
2220 }
2221 
2222 static void
2223 zone_set_dst(VALUE zone, struct time_object *tobj, VALUE tm)
2224 {
2225  ID id_dst_p;
2226  VALUE dst;
2227  CONST_ID(id_dst_p, "dst?");
2228  dst = rb_check_funcall(zone, id_dst_p, 1, &tm);
2229  tobj->vtm.isdst = (dst != Qundef && RTEST(dst));
2230 }
2231 
2232 static int
2233 zone_timelocal(VALUE zone, VALUE time)
2234 {
2235  VALUE utc, tm;
2236  struct time_object *tobj = DATA_PTR(time);
2237  wideval_t t, s;
2238 
2239  t = rb_time_unmagnify(tobj->timew);
2240  tm = tm_from_time(rb_cTimeTM, time);
2241  utc = rb_check_funcall(zone, id_local_to_utc, 1, &tm);
2242  if (utc == Qundef) return 0;
2243 
2244  s = extract_time(utc);
2245  zone_set_offset(zone, tobj, t, s);
2246  s = rb_time_magnify(s);
2247  if (tobj->vtm.subsecx != INT2FIX(0)) {
2248  s = wadd(s, v2w(tobj->vtm.subsecx));
2249  }
2250  tobj->timew = s;
2251  zone_set_dst(zone, tobj, tm);
2252  return 1;
2253 }
2254 
2255 static int
2256 zone_localtime(VALUE zone, VALUE time)
2257 {
2258  VALUE local, tm, subsecx;
2259  struct time_object *tobj = DATA_PTR(time);
2260  wideval_t t, s;
2261 
2262  split_second(tobj->timew, &t, &subsecx);
2263  tm = tm_from_time(rb_cTimeTM, time);
2264 
2265  local = rb_check_funcall(zone, id_utc_to_local, 1, &tm);
2266  if (local == Qundef) return 0;
2267 
2268  s = extract_vtm(local, &tobj->vtm, subsecx);
2269  tobj->tm_got = 1;
2270  zone_set_offset(zone, tobj, s, t);
2271  zone_set_dst(zone, tobj, tm);
2272  return 1;
2273 }
2274 
2275 static VALUE
2276 find_timezone(VALUE time, VALUE zone)
2277 {
2278  VALUE klass = CLASS_OF(time);
2279 
2280  return rb_check_funcall_default(klass, id_find_timezone, 1, &zone, Qnil);
2281 }
2282 
2283 static VALUE
2284 time_init_1(int argc, VALUE *argv, VALUE time)
2285 {
2286  struct vtm vtm;
2287  VALUE zone = Qnil;
2288  VALUE utc = Qnil;
2289  VALUE v[7];
2290  struct time_object *tobj;
2291 
2292  vtm.wday = VTM_WDAY_INITVAL;
2293  vtm.yday = 0;
2294  vtm.zone = rb_fstring_lit("");
2295 
2296  /* year mon mday hour min sec off */
2297  rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]);
2298 
2299  vtm.year = obj2vint(v[0]);
2300 
2301  vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]);
2302 
2303  vtm.mday = NIL_P(v[2]) ? 1 : obj2ubits(v[2], 5);
2304 
2305  vtm.hour = NIL_P(v[3]) ? 0 : obj2ubits(v[3], 5);
2306 
2307  vtm.min = NIL_P(v[4]) ? 0 : obj2ubits(v[4], 6);
2308 
2309  if (NIL_P(v[5])) {
2310  vtm.sec = 0;
2311  vtm.subsecx = INT2FIX(0);
2312  }
2313  else {
2314  VALUE subsecx;
2315  vtm.sec = obj2subsecx(v[5], &subsecx);
2316  vtm.subsecx = subsecx;
2317  }
2318 
2319  vtm.isdst = VTM_ISDST_INITVAL;
2320  vtm.utc_offset = Qnil;
2321  if (!NIL_P(v[6])) {
2322  VALUE arg = v[6];
2323  if (arg == ID2SYM(rb_intern("dst")))
2324  vtm.isdst = 1;
2325  else if (arg == ID2SYM(rb_intern("std")))
2326  vtm.isdst = 0;
2327  else if (maybe_tzobj_p(arg))
2328  zone = arg;
2329  else if (!NIL_P(utc = utc_offset_arg(arg)))
2330  vtm.utc_offset = utc == UTC_ZONE ? INT2FIX(0) : utc;
2331  else if (NIL_P(zone = find_timezone(time, arg)))
2332  invalid_utc_offset();
2333  }
2334 
2335  validate_vtm(&vtm);
2336 
2337  time_modify(time);
2338  GetNewTimeval(time, tobj);
2339 
2340  if (!NIL_P(zone)) {
2341  tobj->timew = timegmw(&vtm);
2342  tobj->vtm = vtm;
2343  tobj->tm_got = 1;
2344  TZMODE_SET_LOCALTIME(tobj);
2345  if (zone_timelocal(zone, time)) {
2346  return time;
2347  }
2348  else if (NIL_P(vtm.utc_offset = utc_offset_arg(zone))) {
2349  if (NIL_P(zone = find_timezone(time, zone)) || !zone_timelocal(zone, time))
2350  invalid_utc_offset();
2351  }
2352  }
2353 
2354  if (utc == UTC_ZONE) {
2355  tobj->timew = timegmw(&vtm);
2356  tobj->vtm = vtm;
2357  tobj->tm_got = 1;
2358  TZMODE_SET_UTC(tobj);
2359  return time;
2360  }
2361 
2362  tobj->tzmode = TIME_TZMODE_LOCALTIME;
2363  tobj->tm_got=0;
2364  tobj->timew = WINT2FIXWV(0);
2365 
2366  if (!NIL_P(vtm.utc_offset)) {
2367  VALUE off = vtm.utc_offset;
2368  vtm_add_offset(&vtm, off, -1);
2369  vtm.utc_offset = Qnil;
2370  tobj->timew = timegmw(&vtm);
2371  return time_set_utc_offset(time, off);
2372  }
2373  else {
2374  tobj->timew = timelocalw(&vtm);
2375  return time_localtime(time);
2376  }
2377 }
2378 
2379 
2380 /*
2381  * call-seq:
2382  * Time.new -> time
2383  * Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, tz=nil) -> time
2384  *
2385  * Returns a Time object.
2386  *
2387  * It is initialized to the current system time if no argument is given.
2388  *
2389  * *Note:* The new object will use the resolution available on your
2390  * system clock, and may include fractional seconds.
2391  *
2392  * If one or more arguments are specified, the time is initialized to the
2393  * specified time.
2394  *
2395  * +sec+ may have fraction if it is a rational.
2396  *
2397  * +tz+ specifies the timezone.
2398  * It can be an offset from UTC, given either as a string such as "+09:00"
2399  * or a single letter "A".."Z" excluding "J" (so-called military time zone),
2400  * or as a number of seconds such as 32400.
2401  * Or it can be a timezone object,
2402  * see {Timezone argument}[#class-Time-label-Timezone+argument] for details.
2403  *
2404  * a = Time.new #=> 2007-11-19 07:50:02 -0600
2405  * b = Time.new #=> 2007-11-19 07:50:02 -0600
2406  * a == b #=> false
2407  * "%.6f" % a.to_f #=> "1195480202.282373"
2408  * "%.6f" % b.to_f #=> "1195480202.283415"
2409  *
2410  * Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900
2411  *
2412  * # A trip for RubyConf 2007
2413  * t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita)
2414  * t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis)
2415  * t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis)
2416  * t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte)
2417  * t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte)
2418  * t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit)
2419  * t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit)
2420  * t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita)
2421  * (t2-t1)/3600.0 #=> 10.666666666666666
2422  * (t4-t3)/3600.0 #=> 2.466666666666667
2423  * (t6-t5)/3600.0 #=> 1.95
2424  * (t8-t7)/3600.0 #=> 13.416666666666666
2425  *
2426  */
2427 
2428 static VALUE
2429 time_init(int argc, VALUE *argv, VALUE time)
2430 {
2431  if (argc == 0)
2432  return time_init_0(time);
2433  else
2434  return time_init_1(argc, argv, time);
2435 }
2436 
2437 static void
2438 time_overflow_p(time_t *secp, long *nsecp)
2439 {
2440  time_t sec = *secp;
2441  long nsec = *nsecp;
2442  long sec2;
2443 
2444  if (nsec >= 1000000000) { /* nsec positive overflow */
2445  sec2 = nsec / 1000000000;
2446  if (TIMET_MAX - sec2 < sec) {
2447  rb_raise(rb_eRangeError, "out of Time range");
2448  }
2449  nsec -= sec2 * 1000000000;
2450  sec += sec2;
2451  }
2452  else if (nsec < 0) { /* nsec negative overflow */
2453  sec2 = NDIV(nsec,1000000000); /* negative div */
2454  if (sec < TIMET_MIN - sec2) {
2455  rb_raise(rb_eRangeError, "out of Time range");
2456  }
2457  nsec -= sec2 * 1000000000;
2458  sec += sec2;
2459  }
2460 #ifndef NEGATIVE_TIME_T
2461  if (sec < 0)
2462  rb_raise(rb_eArgError, "time must be positive");
2463 #endif
2464  *secp = sec;
2465  *nsecp = nsec;
2466 }
2467 
2468 static wideval_t
2469 nsec2timew(time_t sec, long nsec)
2470 {
2471  struct timespec ts;
2472  time_overflow_p(&sec, &nsec);
2473  ts.tv_sec = sec;
2474  ts.tv_nsec = nsec;
2475  return timespec2timew(&ts);
2476 }
2477 
2478 static VALUE
2479 time_new_timew(VALUE klass, wideval_t timew)
2480 {
2481  VALUE time = time_s_alloc(klass);
2482  struct time_object *tobj;
2483 
2484  tobj = DATA_PTR(time); /* skip type check */
2485  tobj->tzmode = TIME_TZMODE_LOCALTIME;
2486  tobj->timew = timew;
2487 
2488  return time;
2489 }
2490 
2491 VALUE
2492 rb_time_new(time_t sec, long usec)
2493 {
2494  wideval_t timew;
2495 
2496  if (usec >= 1000000) {
2497  long sec2 = usec / 1000000;
2498  if (sec > TIMET_MAX - sec2) {
2499  rb_raise(rb_eRangeError, "out of Time range");
2500  }
2501  usec -= sec2 * 1000000;
2502  sec += sec2;
2503  }
2504  else if (usec < 0) {
2505  long sec2 = NDIV(usec,1000000); /* negative div */
2506  if (sec < TIMET_MIN - sec2) {
2507  rb_raise(rb_eRangeError, "out of Time range");
2508  }
2509  usec -= sec2 * 1000000;
2510  sec += sec2;
2511  }
2512 
2513  timew = nsec2timew(sec, usec * 1000);
2514  return time_new_timew(rb_cTime, timew);
2515 }
2516 
2517 /* returns localtime time object */
2518 VALUE
2519 rb_time_nano_new(time_t sec, long nsec)
2520 {
2521  return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
2522 }
2523 
2529 VALUE
2530 rb_time_timespec_new(const struct timespec *ts, int offset)
2531 {
2532  struct time_object *tobj;
2533  VALUE time = time_new_timew(rb_cTime, nsec2timew(ts->tv_sec, ts->tv_nsec));
2534 
2535  if (-86400 < offset && offset < 86400) { /* fixoff */
2536  GetTimeval(time, tobj);
2537  TZMODE_SET_FIXOFF(tobj, INT2FIX(offset));
2538  }
2539  else if (offset == INT_MAX) { /* localtime */
2540  }
2541  else if (offset == INT_MAX-1) { /* UTC */
2542  GetTimeval(time, tobj);
2543  TZMODE_SET_UTC(tobj);
2544  }
2545  else {
2546  rb_raise(rb_eArgError, "utc_offset out of range");
2547  }
2548 
2549  return time;
2550 }
2551 
2552 VALUE
2554 {
2555  VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
2556 
2557  if (!NIL_P(off)) {
2558  VALUE zone = off;
2559 
2560  if (maybe_tzobj_p(zone)) {
2561  time_gmtime(time);
2562  if (zone_timelocal(zone, time)) return time;
2563  }
2564  if (NIL_P(off = utc_offset_arg(off))) {
2565  if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
2566  time_gmtime(time);
2567  if (!zone_timelocal(zone, time)) invalid_utc_offset();
2568  return time;
2569  }
2570  else if (off == UTC_ZONE) {
2571  return time_gmtime(time);
2572  }
2573 
2574  validate_utc_offset(off);
2575  time_set_utc_offset(time, off);
2576  return time;
2577  }
2578 
2579  return time;
2580 }
2581 
2582 static struct timespec
2583 time_timespec(VALUE num, int interval)
2584 {
2585  struct timespec t;
2586  const char *const tstr = interval ? "time interval" : "time";
2587  VALUE i, f, ary;
2588 
2589 #ifndef NEGATIVE_TIME_T
2590 # define arg_range_check(v) \
2591  (((v) < 0) ? \
2592  rb_raise(rb_eArgError, "%s must not be negative", tstr) : \
2593  (void)0)
2594 #else
2595 # define arg_range_check(v) \
2596  ((interval && (v) < 0) ? \
2597  rb_raise(rb_eArgError, "time interval must not be negative") : \
2598  (void)0)
2599 #endif
2600 
2601  if (FIXNUM_P(num)) {
2602  t.tv_sec = NUM2TIMET(num);
2603  arg_range_check(t.tv_sec);
2604  t.tv_nsec = 0;
2605  }
2606  else if (RB_FLOAT_TYPE_P(num)) {
2607  double x = RFLOAT_VALUE(num);
2608  arg_range_check(x);
2609  {
2610  double f, d;
2611 
2612  d = modf(x, &f);
2613  if (d >= 0) {
2614  t.tv_nsec = (int)(d*1e9+0.5);
2615  if (t.tv_nsec >= 1000000000) {
2616  t.tv_nsec -= 1000000000;
2617  f += 1;
2618  }
2619  }
2620  else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
2621  t.tv_nsec = 1000000000 - t.tv_nsec;
2622  f -= 1;
2623  }
2624  t.tv_sec = (time_t)f;
2625  if (f != t.tv_sec) {
2626  rb_raise(rb_eRangeError, "%f out of Time range", x);
2627  }
2628  }
2629  }
2630  else if (RB_TYPE_P(num, T_BIGNUM)) {
2631  t.tv_sec = NUM2TIMET(num);
2632  arg_range_check(t.tv_sec);
2633  t.tv_nsec = 0;
2634  }
2635  else {
2636  i = INT2FIX(1);
2637  ary = rb_check_funcall(num, id_divmod, 1, &i);
2638  if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
2639  i = rb_ary_entry(ary, 0);
2640  f = rb_ary_entry(ary, 1);
2641  t.tv_sec = NUM2TIMET(i);
2642  arg_range_check(t.tv_sec);
2643  f = rb_funcall(f, '*', 1, INT2FIX(1000000000));
2644  t.tv_nsec = NUM2LONG(f);
2645  }
2646  else {
2647  rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s",
2648  rb_obj_class(num), tstr);
2649  }
2650  }
2651  return t;
2652 #undef arg_range_check
2653 }
2654 
2655 static struct timeval
2656 time_timeval(VALUE num, int interval)
2657 {
2658  struct timespec ts;
2659  struct timeval tv;
2660 
2661  ts = time_timespec(num, interval);
2662  tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
2663  tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2664 
2665  return tv;
2666 }
2667 
2668 struct timeval
2670 {
2671  return time_timeval(num, TRUE);
2672 }
2673 
2674 struct timeval
2676 {
2677  struct time_object *tobj;
2678  struct timeval t;
2679  struct timespec ts;
2680 
2681  if (IsTimeval(time)) {
2682  GetTimeval(time, tobj);
2683  ts = timew2timespec(tobj->timew);
2685  t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2686  return t;
2687  }
2688  return time_timeval(time, FALSE);
2689 }
2690 
2691 struct timespec
2693 {
2694  struct time_object *tobj;
2695  struct timespec t;
2696 
2697  if (IsTimeval(time)) {
2698  GetTimeval(time, tobj);
2699  t = timew2timespec(tobj->timew);
2700  return t;
2701  }
2702  return time_timespec(time, FALSE);
2703 }
2704 
2705 struct timespec
2707 {
2708  return time_timespec(num, TRUE);
2709 }
2710 
2711 enum {
2714 };
2715 
2716 static bool
2717 get_tmopt(VALUE opts, VALUE vals[TMOPT_MAX_])
2718 {
2719  ID ids[TMOPT_MAX_];
2720 
2721  if (NIL_P(opts)) return false;
2722  CONST_ID(ids[TMOPT_IN], "in");
2723  rb_get_kwargs(opts, ids, 0, TMOPT_MAX_, vals);
2724  return true;
2725 }
2726 
2727 /*
2728  * call-seq:
2729  * Time.now -> time
2730  *
2731  * Creates a new Time object for the current time.
2732  * This is same as Time.new without arguments.
2733  *
2734  * Time.now #=> 2009-06-24 12:39:54 +0900
2735  */
2736 
2737 static VALUE
2738 time_s_now(int argc, VALUE *argv, VALUE klass)
2739 {
2740  VALUE vals[TMOPT_MAX_], opts, t, zone = Qundef;
2741  rb_scan_args(argc, argv, ":", &opts);
2742  if (get_tmopt(opts, vals)) zone = vals[TMOPT_IN];
2743  t = rb_class_new_instance(0, NULL, klass);
2744  if (zone != Qundef) {
2745  time_zonelocal(t, zone);
2746  }
2747  return t;
2748 }
2749 
2750 static int
2751 get_scale(VALUE unit)
2752 {
2753  if (unit == ID2SYM(id_nanosecond) || unit == ID2SYM(id_nsec)) {
2754  return 1000000000;
2755  }
2756  else if (unit == ID2SYM(id_microsecond) || unit == ID2SYM(id_usec)) {
2757  return 1000000;
2758  }
2759  else if (unit == ID2SYM(id_millisecond)) {
2760  return 1000;
2761  }
2762  else {
2763  rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
2764  }
2765 }
2766 
2767 /*
2768  * call-seq:
2769  * Time.at(time) -> time
2770  * Time.at(seconds_with_frac) -> time
2771  * Time.at(seconds, microseconds_with_frac) -> time
2772  * Time.at(seconds, milliseconds, :millisecond) -> time
2773  * Time.at(seconds, microseconds, :usec) -> time
2774  * Time.at(seconds, microseconds, :microsecond) -> time
2775  * Time.at(seconds, nanoseconds, :nsec) -> time
2776  * Time.at(seconds, nanoseconds, :nanosecond) -> time
2777  * Time.at(time, in: tz) -> time
2778  * Time.at(seconds_with_frac, in: tz) -> time
2779  * Time.at(seconds, microseconds_with_frac, in: tz) -> time
2780  * Time.at(seconds, milliseconds, :millisecond, in: tz) -> time
2781  * Time.at(seconds, microseconds, :usec, in: tz) -> time
2782  * Time.at(seconds, microseconds, :microsecond, in: tz) -> time
2783  * Time.at(seconds, nanoseconds, :nsec, in: tz) -> time
2784  * Time.at(seconds, nanoseconds, :nanosecond, in: tz) -> time
2785  *
2786  * Creates a new Time object with the value given by +time+,
2787  * the given number of +seconds_with_frac+, or
2788  * +seconds+ and +microseconds_with_frac+ since the Epoch.
2789  * +seconds_with_frac+ and +microseconds_with_frac+
2790  * can be an Integer, Float, Rational, or other Numeric.
2791  * non-portable feature allows the offset to be negative on some systems.
2792  *
2793  * If +in+ argument is given, the result is in that timezone or UTC offset, or
2794  * if a numeric argument is given, the result is in local time.
2795  *
2796  * Time.at(0) #=> 1969-12-31 18:00:00 -0600
2797  * Time.at(Time.at(0)) #=> 1969-12-31 18:00:00 -0600
2798  * Time.at(946702800) #=> 1999-12-31 23:00:00 -0600
2799  * Time.at(-284061600) #=> 1960-12-31 00:00:00 -0600
2800  * Time.at(946684800.2).usec #=> 200000
2801  * Time.at(946684800, 123456.789).nsec #=> 123456789
2802  * Time.at(946684800, 123456789, :nsec).nsec #=> 123456789
2803  */
2804 
2805 static VALUE
2806 time_s_at(int argc, VALUE *argv, VALUE klass)
2807 {
2808  VALUE time, t, unit = Qundef, zone = Qundef, opts;
2809  VALUE vals[TMOPT_MAX_];
2810  wideval_t timew;
2811 
2812  argc = rb_scan_args(argc, argv, "12:", &time, &t, &unit, &opts);
2813  if (get_tmopt(opts, vals)) {
2814  zone = vals[0];
2815  }
2816  if (argc >= 2) {
2817  int scale = argc == 3 ? get_scale(unit) : 1000000;
2818  time = num_exact(time);
2819  t = num_exact(t);
2820  timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, scale));
2821  t = time_new_timew(klass, timew);
2822  }
2823  else if (IsTimeval(time)) {
2824  struct time_object *tobj, *tobj2;
2825  GetTimeval(time, tobj);
2826  t = time_new_timew(klass, tobj->timew);
2827  GetTimeval(t, tobj2);
2828  TZMODE_COPY(tobj2, tobj);
2829  }
2830  else {
2831  timew = rb_time_magnify(v2w(num_exact(time)));
2832  t = time_new_timew(klass, timew);
2833  }
2834  if (zone != Qundef) {
2835  time_zonelocal(t, zone);
2836  }
2837 
2838  return t;
2839 }
2840 
2841 static const char months[][4] = {
2842  "jan", "feb", "mar", "apr", "may", "jun",
2843  "jul", "aug", "sep", "oct", "nov", "dec",
2844 };
2845 
2846 static int
2847 obj2int(VALUE obj)
2848 {
2849  if (RB_TYPE_P(obj, T_STRING)) {
2850  obj = rb_str_to_inum(obj, 10, FALSE);
2851  }
2852 
2853  return NUM2INT(obj);
2854 }
2855 
2856 static uint32_t
2857 obj2ubits(VALUE obj, size_t bits)
2858 {
2859  static const uint32_t u32max = (uint32_t)-1;
2860  const uint32_t usable_mask = ~(u32max << bits);
2861  uint32_t rv;
2862  int tmp = obj2int(obj);
2863 
2864  if (tmp < 0)
2865  rb_raise(rb_eArgError, "argument out of range");
2866  rv = tmp;
2867  if ((rv & usable_mask) != rv)
2868  rb_raise(rb_eArgError, "argument out of range");
2869  return rv;
2870 }
2871 
2872 static VALUE
2873 obj2vint(VALUE obj)
2874 {
2875  if (RB_TYPE_P(obj, T_STRING)) {
2876  obj = rb_str_to_inum(obj, 10, FALSE);
2877  }
2878  else {
2879  obj = rb_to_int(obj);
2880  }
2881 
2882  return obj;
2883 }
2884 
2885 static uint32_t
2886 obj2subsecx(VALUE obj, VALUE *subsecx)
2887 {
2888  VALUE subsec;
2889 
2890  if (RB_TYPE_P(obj, T_STRING)) {
2891  obj = rb_str_to_inum(obj, 10, FALSE);
2892  *subsecx = INT2FIX(0);
2893  }
2894  else {
2895  divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
2896  *subsecx = w2v(rb_time_magnify(v2w(subsec)));
2897  }
2898  return obj2ubits(obj, 6); /* vtm->sec */
2899 }
2900 
2901 static VALUE
2902 usec2subsecx(VALUE obj)
2903 {
2904  if (RB_TYPE_P(obj, T_STRING)) {
2905  obj = rb_str_to_inum(obj, 10, FALSE);
2906  }
2907 
2908  return mulquov(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
2909 }
2910 
2911 static uint32_t
2912 month_arg(VALUE arg)
2913 {
2914  int i, mon;
2915 
2917  if (!NIL_P(s) && RSTRING_LEN(s) > 0) {
2918  mon = 0;
2919  for (i=0; i<12; i++) {
2920  if (RSTRING_LEN(s) == 3 &&
2921  STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) {
2922  mon = i+1;
2923  break;
2924  }
2925  }
2926  if (mon == 0) {
2927  char c = RSTRING_PTR(s)[0];
2928 
2929  if ('0' <= c && c <= '9') {
2930  mon = obj2ubits(s, 4);
2931  }
2932  }
2933  }
2934  else {
2935  mon = obj2ubits(arg, 4);
2936  }
2937  return mon;
2938 }
2939 
2940 static VALUE
2941 validate_utc_offset(VALUE utc_offset)
2942 {
2943  if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
2944  rb_raise(rb_eArgError, "utc_offset out of range");
2945  return utc_offset;
2946 }
2947 
2948 static VALUE
2949 validate_zone_name(VALUE zone_name)
2950 {
2951  StringValueCStr(zone_name);
2952  return zone_name;
2953 }
2954 
2955 static void
2956 validate_vtm(struct vtm *vtm)
2957 {
2958 #define validate_vtm_range(mem, b, e) \
2959  ((vtm->mem < b || vtm->mem > e) ? \
2960  rb_raise(rb_eArgError, #mem" out of range") : (void)0)
2961  validate_vtm_range(mon, 1, 12);
2962  validate_vtm_range(mday, 1, 31);
2963  validate_vtm_range(hour, 0, 24);
2964  validate_vtm_range(min, 0, (vtm->hour == 24 ? 0 : 59));
2965  validate_vtm_range(sec, 0, (vtm->hour == 24 ? 0 : 60));
2966  if (lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE)))
2967  rb_raise(rb_eArgError, "subsecx out of range");
2968  if (!NIL_P(vtm->utc_offset)) validate_utc_offset(vtm->utc_offset);
2969 #undef validate_vtm_range
2970 }
2971 
2972 static void
2973 time_arg(int argc, const VALUE *argv, struct vtm *vtm)
2974 {
2975  VALUE v[8];
2976  VALUE subsecx = INT2FIX(0);
2977 
2978  vtm->year = INT2FIX(0);
2979  vtm->mon = 0;
2980  vtm->mday = 0;
2981  vtm->hour = 0;
2982  vtm->min = 0;
2983  vtm->sec = 0;
2984  vtm->subsecx = INT2FIX(0);
2985  vtm->utc_offset = Qnil;
2986  vtm->wday = 0;
2987  vtm->yday = 0;
2988  vtm->isdst = 0;
2989  vtm->zone = rb_fstring_lit("");
2990 
2991  if (argc == 10) {
2992  v[0] = argv[5];
2993  v[1] = argv[4];
2994  v[2] = argv[3];
2995  v[3] = argv[2];
2996  v[4] = argv[1];
2997  v[5] = argv[0];
2998  v[6] = Qnil;
2999  vtm->isdst = RTEST(argv[8]) ? 1 : 0;
3000  }
3001  else {
3002  rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
3003  /* v[6] may be usec or zone (parsedate) */
3004  /* v[7] is wday (parsedate; ignored) */
3005  vtm->wday = VTM_WDAY_INITVAL;
3006  vtm->isdst = VTM_ISDST_INITVAL;
3007  }
3008 
3009  vtm->year = obj2vint(v[0]);
3010 
3011  if (NIL_P(v[1])) {
3012  vtm->mon = 1;
3013  }
3014  else {
3015  vtm->mon = month_arg(v[1]);
3016  }
3017 
3018  if (NIL_P(v[2])) {
3019  vtm->mday = 1;
3020  }
3021  else {
3022  vtm->mday = obj2ubits(v[2], 5);
3023  }
3024 
3025  /* normalize month-mday */
3026  switch (vtm->mon) {
3027  case 2:
3028  {
3029  /* this drops higher bits but it's not a problem to calc leap year */
3030  unsigned int mday2 = leap_year_v_p(vtm->year) ? 29 : 28;
3031  if (vtm->mday > mday2) {
3032  vtm->mday -= mday2;
3033  vtm->mon++;
3034  }
3035  }
3036  break;
3037  case 4:
3038  case 6:
3039  case 9:
3040  case 11:
3041  if (vtm->mday == 31) {
3042  vtm->mon++;
3043  vtm->mday = 1;
3044  }
3045  break;
3046  }
3047 
3048  vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5);
3049 
3050  vtm->min = NIL_P(v[4])?0:obj2ubits(v[4], 6);
3051 
3052  if (!NIL_P(v[6]) && argc == 7) {
3053  vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6);
3054  subsecx = usec2subsecx(v[6]);
3055  }
3056  else {
3057  /* when argc == 8, v[6] is timezone, but ignored */
3058  if (NIL_P(v[5])) {
3059  vtm->sec = 0;
3060  }
3061  else {
3062  vtm->sec = obj2subsecx(v[5], &subsecx);
3063  }
3064  }
3065  vtm->subsecx = subsecx;
3066 
3067  validate_vtm(vtm);
3068  RB_GC_GUARD(subsecx);
3069 }
3070 
3071 static int
3072 leap_year_p(long y)
3073 {
3074  /* TODO:
3075  * ensure about negative years in proleptic Gregorian calendar.
3076  */
3077  unsigned long uy = (unsigned long)(LIKELY(y >= 0) ? y : -y);
3078 
3079  if (LIKELY(uy % 4 != 0)) return 0;
3080 
3081  unsigned long century = uy / 100;
3082  if (LIKELY(uy != century * 100)) return 1;
3083  return century % 4 == 0;
3084 }
3085 
3086 static time_t
3087 timegm_noleapsecond(struct tm *tm)
3088 {
3089  long tm_year = tm->tm_year;
3090  int tm_yday = calc_tm_yday(tm->tm_year, tm->tm_mon, tm->tm_mday);
3091 
3092  /*
3093  * `Seconds Since the Epoch' in SUSv3:
3094  * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
3095  * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
3096  * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
3097  */
3098  return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
3099  (time_t)(tm_yday +
3100  (tm_year-70)*365 +
3101  DIV(tm_year-69,4) -
3102  DIV(tm_year-1,100) +
3103  DIV(tm_year+299,400))*86400;
3104 }
3105 
3106 #if 0
3107 #define DEBUG_FIND_TIME_NUMGUESS
3108 #define DEBUG_GUESSRANGE
3109 #endif
3110 
3111 #ifdef DEBUG_GUESSRANGE
3112 #define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %"PRI_TIMET_PREFIX"u\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo))
3113 #else
3114 #define DEBUG_REPORT_GUESSRANGE
3115 #endif
3116 
3117 #ifdef DEBUG_FIND_TIME_NUMGUESS
3118 #define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++,
3119 static unsigned long long find_time_numguess;
3120 
3121 static VALUE find_time_numguess_getter(void)
3122 {
3123  return ULL2NUM(find_time_numguess);
3124 }
3125 #else
3126 #define DEBUG_FIND_TIME_NUMGUESS_INC
3127 #endif
3128 
3129 static const char *
3130 find_time_t(struct tm *tptr, int utc_p, time_t *tp)
3131 {
3132  time_t guess, guess0, guess_lo, guess_hi;
3133  struct tm *tm, tm0, tm_lo, tm_hi;
3134  int d;
3135  int find_dst;
3136  struct tm result;
3137  int status;
3138  int tptr_tm_yday;
3139 
3140 #define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
3141 
3142  guess_lo = TIMET_MIN;
3143  guess_hi = TIMET_MAX;
3144 
3145  find_dst = 0 < tptr->tm_isdst;
3146 
3147  /* /etc/localtime might be changed. reload it. */
3148  update_tz();
3149 
3150  tm0 = *tptr;
3151  if (tm0.tm_mon < 0) {
3152  tm0.tm_mon = 0;
3153  tm0.tm_mday = 1;
3154  tm0.tm_hour = 0;
3155  tm0.tm_min = 0;
3156  tm0.tm_sec = 0;
3157  }
3158  else if (11 < tm0.tm_mon) {
3159  tm0.tm_mon = 11;
3160  tm0.tm_mday = 31;
3161  tm0.tm_hour = 23;
3162  tm0.tm_min = 59;
3163  tm0.tm_sec = 60;
3164  }
3165  else if (tm0.tm_mday < 1) {
3166  tm0.tm_mday = 1;
3167  tm0.tm_hour = 0;
3168  tm0.tm_min = 0;
3169  tm0.tm_sec = 0;
3170  }
3171  else if ((d = (leap_year_p(1900 + tm0.tm_year) ?
3172  leap_year_days_in_month :
3173  common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) {
3174  tm0.tm_mday = d;
3175  tm0.tm_hour = 23;
3176  tm0.tm_min = 59;
3177  tm0.tm_sec = 60;
3178  }
3179  else if (tm0.tm_hour < 0) {
3180  tm0.tm_hour = 0;
3181  tm0.tm_min = 0;
3182  tm0.tm_sec = 0;
3183  }
3184  else if (23 < tm0.tm_hour) {
3185  tm0.tm_hour = 23;
3186  tm0.tm_min = 59;
3187  tm0.tm_sec = 60;
3188  }
3189  else if (tm0.tm_min < 0) {
3190  tm0.tm_min = 0;
3191  tm0.tm_sec = 0;
3192  }
3193  else if (59 < tm0.tm_min) {
3194  tm0.tm_min = 59;
3195  tm0.tm_sec = 60;
3196  }
3197  else if (tm0.tm_sec < 0) {
3198  tm0.tm_sec = 0;
3199  }
3200  else if (60 < tm0.tm_sec) {
3201  tm0.tm_sec = 60;
3202  }
3203 
3205  guess0 = guess = timegm_noleapsecond(&tm0);
3206  tm = GUESS(&guess);
3207  if (tm) {
3208  d = tmcmp(tptr, tm);
3209  if (d == 0) { goto found; }
3210  if (d < 0) {
3211  guess_hi = guess;
3212  guess -= 24 * 60 * 60;
3213  }
3214  else {
3215  guess_lo = guess;
3216  guess += 24 * 60 * 60;
3217  }
3219  if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
3220  d = tmcmp(tptr, tm);
3221  if (d == 0) { goto found; }
3222  if (d < 0)
3223  guess_hi = guess;
3224  else
3225  guess_lo = guess;
3227  }
3228  }
3229 
3230  tm = GUESS(&guess_lo);
3231  if (!tm) goto error;
3232  d = tmcmp(tptr, tm);
3233  if (d < 0) goto out_of_range;
3234  if (d == 0) { guess = guess_lo; goto found; }
3235  tm_lo = *tm;
3236 
3237  tm = GUESS(&guess_hi);
3238  if (!tm) goto error;
3239  d = tmcmp(tptr, tm);
3240  if (d > 0) goto out_of_range;
3241  if (d == 0) { guess = guess_hi; goto found; }
3242  tm_hi = *tm;
3243 
3245 
3246  status = 1;
3247 
3248  while (guess_lo + 1 < guess_hi) {
3249  if (status == 0) {
3250  binsearch:
3251  guess = guess_lo / 2 + guess_hi / 2;
3252  if (guess <= guess_lo)
3253  guess = guess_lo + 1;
3254  else if (guess >= guess_hi)
3255  guess = guess_hi - 1;
3256  status = 1;
3257  }
3258  else {
3259  if (status == 1) {
3260  time_t guess0_hi = timegm_noleapsecond(&tm_hi);
3261  guess = guess_hi - (guess0_hi - guess0);
3262  if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
3263  guess--;
3264  status = 2;
3265  }
3266  else if (status == 2) {
3267  time_t guess0_lo = timegm_noleapsecond(&tm_lo);
3268  guess = guess_lo + (guess0 - guess0_lo);
3269  if (guess == guess_lo)
3270  guess++;
3271  status = 0;
3272  }
3273  if (guess <= guess_lo || guess_hi <= guess) {
3274  /* Previous guess is invalid. try binary search. */
3275 #ifdef DEBUG_GUESSRANGE
3276  if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo);
3277  if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess);
3278 #endif
3279  goto binsearch;
3280  }
3281  }
3282 
3283  tm = GUESS(&guess);
3284  if (!tm) goto error;
3285 
3286  d = tmcmp(tptr, tm);
3287 
3288  if (d < 0) {
3289  guess_hi = guess;
3290  tm_hi = *tm;
3292  }
3293  else if (d > 0) {
3294  guess_lo = guess;
3295  tm_lo = *tm;
3297  }
3298  else {
3299  found:
3300  if (!utc_p) {
3301  /* If localtime is nonmonotonic, another result may exist. */
3302  time_t guess2;
3303  if (find_dst) {
3304  guess2 = guess - 2 * 60 * 60;
3305  tm = LOCALTIME(&guess2, result);
3306  if (tm) {
3307  if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
3308  tptr->tm_min != tm->tm_min ||
3309  tptr->tm_sec != tm->tm_sec) {
3310  guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3311  (tm->tm_min - tptr->tm_min) * 60 +
3312  (tm->tm_sec - tptr->tm_sec);
3313  if (tptr->tm_mday != tm->tm_mday)
3314  guess2 += 24 * 60 * 60;
3315  if (guess != guess2) {
3316  tm = LOCALTIME(&guess2, result);
3317  if (tm && tmcmp(tptr, tm) == 0) {
3318  if (guess < guess2)
3319  *tp = guess;
3320  else
3321  *tp = guess2;
3322  return NULL;
3323  }
3324  }
3325  }
3326  }
3327  }
3328  else {
3329  guess2 = guess + 2 * 60 * 60;
3330  tm = LOCALTIME(&guess2, result);
3331  if (tm) {
3332  if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
3333  tptr->tm_min != tm->tm_min ||
3334  tptr->tm_sec != tm->tm_sec) {
3335  guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3336  (tm->tm_min - tptr->tm_min) * 60 +
3337  (tm->tm_sec - tptr->tm_sec);
3338  if (tptr->tm_mday != tm->tm_mday)
3339  guess2 -= 24 * 60 * 60;
3340  if (guess != guess2) {
3341  tm = LOCALTIME(&guess2, result);
3342  if (tm && tmcmp(tptr, tm) == 0) {
3343  if (guess < guess2)
3344  *tp = guess2;
3345  else
3346  *tp = guess;
3347  return NULL;
3348  }
3349  }
3350  }
3351  }
3352  }
3353  }
3354  *tp = guess;
3355  return NULL;
3356  }
3357  }
3358 
3359  /* Given argument has no corresponding time_t. Let's extrapolate. */
3360  /*
3361  * `Seconds Since the Epoch' in SUSv3:
3362  * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
3363  * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
3364  * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
3365  */
3366 
3367  tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
3368 
3369  *tp = guess_lo +
3370  ((tptr->tm_year - tm_lo.tm_year) * 365 +
3371  DIV((tptr->tm_year-69), 4) -
3372  DIV((tptr->tm_year-1), 100) +
3373  DIV((tptr->tm_year+299), 400) -
3374  DIV((tm_lo.tm_year-69), 4) +
3375  DIV((tm_lo.tm_year-1), 100) -
3376  DIV((tm_lo.tm_year+299), 400) +
3377  tptr_tm_yday -
3378  tm_lo.tm_yday) * 86400 +
3379  (tptr->tm_hour - tm_lo.tm_hour) * 3600 +
3380  (tptr->tm_min - tm_lo.tm_min) * 60 +
3381  (tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
3382 
3383  return NULL;
3384 
3385  out_of_range:
3386  return "time out of range";
3387 
3388  error:
3389  return "gmtime/localtime error";
3390 }
3391 
3392 static int
3393 vtmcmp(struct vtm *a, struct vtm *b)
3394 {
3395  if (ne(a->year, b->year))
3396  return lt(a->year, b->year) ? -1 : 1;
3397  else if (a->mon != b->mon)
3398  return a->mon < b->mon ? -1 : 1;
3399  else if (a->mday != b->mday)
3400  return a->mday < b->mday ? -1 : 1;
3401  else if (a->hour != b->hour)
3402  return a->hour < b->hour ? -1 : 1;
3403  else if (a->min != b->min)
3404  return a->min < b->min ? -1 : 1;
3405  else if (a->sec != b->sec)
3406  return a->sec < b->sec ? -1 : 1;
3407  else if (ne(a->subsecx, b->subsecx))
3408  return lt(a->subsecx, b->subsecx) ? -1 : 1;
3409  else
3410  return 0;
3411 }
3412 
3413 static int
3414 tmcmp(struct tm *a, struct tm *b)
3415 {
3416  if (a->tm_year != b->tm_year)
3417  return a->tm_year < b->tm_year ? -1 : 1;
3418  else if (a->tm_mon != b->tm_mon)
3419  return a->tm_mon < b->tm_mon ? -1 : 1;
3420  else if (a->tm_mday != b->tm_mday)
3421  return a->tm_mday < b->tm_mday ? -1 : 1;
3422  else if (a->tm_hour != b->tm_hour)
3423  return a->tm_hour < b->tm_hour ? -1 : 1;
3424  else if (a->tm_min != b->tm_min)
3425  return a->tm_min < b->tm_min ? -1 : 1;
3426  else if (a->tm_sec != b->tm_sec)
3427  return a->tm_sec < b->tm_sec ? -1 : 1;
3428  else
3429  return 0;
3430 }
3431 
3432 /*
3433  * call-seq:
3434  * Time.utc(year) -> time
3435  * Time.utc(year, month) -> time
3436  * Time.utc(year, month, day) -> time
3437  * Time.utc(year, month, day, hour) -> time
3438  * Time.utc(year, month, day, hour, min) -> time
3439  * Time.utc(year, month, day, hour, min, sec_with_frac) -> time
3440  * Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time
3441  * Time.utc(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
3442  * Time.gm(year) -> time
3443  * Time.gm(year, month) -> time
3444  * Time.gm(year, month, day) -> time
3445  * Time.gm(year, month, day, hour) -> time
3446  * Time.gm(year, month, day, hour, min) -> time
3447  * Time.gm(year, month, day, hour, min, sec_with_frac) -> time
3448  * Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time
3449  * Time.gm(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time
3450  *
3451  * Creates a Time object based on given values, interpreted as UTC (GMT). The
3452  * year must be specified. Other values default to the minimum value
3453  * for that field (and may be +nil+ or omitted). Months may
3454  * be specified by numbers from 1 to 12, or by the three-letter English
3455  * month names. Hours are specified on a 24-hour clock (0..23). Raises
3456  * an ArgumentError if any values are out of range. Will
3457  * also accept ten arguments in the order output by Time#to_a.
3458  *
3459  * +sec_with_frac+ and +usec_with_frac+ can have a fractional part.
3460  *
3461  * Time.utc(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
3462  * Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
3463  */
3464 static VALUE
3465 time_s_mkutc(int argc, VALUE *argv, VALUE klass)
3466 {
3467  struct vtm vtm;
3468 
3469  time_arg(argc, argv, &vtm);
3470  return time_gmtime(time_new_timew(klass, timegmw(&vtm)));
3471 }
3472 
3473 /*
3474  * call-seq:
3475  * Time.local(year) -> time
3476  * Time.local(year, month) -> time
3477  * Time.local(year, month, day) -> time
3478  * Time.local(year, month, day, hour) -> time
3479  * Time.local(year, month, day, hour, min) -> time
3480  * Time.local(year, month, day, hour, min, sec_with_frac) -> time
3481  * Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time
3482  * Time.local(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
3483  * Time.mktime(year) -> time
3484  * Time.mktime(year, month) -> time
3485  * Time.mktime(year, month, day) -> time
3486  * Time.mktime(year, month, day, hour) -> time
3487  * Time.mktime(year, month, day, hour, min) -> time
3488  * Time.mktime(year, month, day, hour, min, sec_with_frac) -> time
3489  * Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time
3490  * Time.mktime(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time
3491  *
3492  * Same as Time::gm, but interprets the values in the
3493  * local time zone.
3494  *
3495  * Time.local(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 -0600
3496  */
3497 
3498 static VALUE
3499 time_s_mktime(int argc, VALUE *argv, VALUE klass)
3500 {
3501  struct vtm vtm;
3502 
3503  time_arg(argc, argv, &vtm);
3504  return time_localtime(time_new_timew(klass, timelocalw(&vtm)));
3505 }
3506 
3507 /*
3508  * call-seq:
3509  * time.to_i -> int
3510  * time.tv_sec -> int
3511  *
3512  * Returns the value of _time_ as an integer number of seconds
3513  * since the Epoch.
3514  *
3515  * t = Time.now
3516  * "%10.5f" % t.to_f #=> "1270968656.89607"
3517  * t.to_i #=> 1270968656
3518  */
3519 
3520 static VALUE
3521 time_to_i(VALUE time)
3522 {
3523  struct time_object *tobj;
3524 
3525  GetTimeval(time, tobj);
3526  return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
3527 }
3528 
3529 /*
3530  * call-seq:
3531  * time.to_f -> float
3532  *
3533  * Returns the value of _time_ as a floating point number of
3534  * seconds since the Epoch.
3535  *
3536  * t = Time.now
3537  * "%10.5f" % t.to_f #=> "1270968744.77658"
3538  * t.to_i #=> 1270968744
3539  *
3540  * Note that IEEE 754 double is not accurate enough to represent
3541  * the exact number of nanoseconds since the Epoch.
3542  */
3543 
3544 static VALUE
3545 time_to_f(VALUE time)
3546 {
3547  struct time_object *tobj;
3548 
3549  GetTimeval(time, tobj);
3550  return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
3551 }
3552 
3553 /*
3554  * call-seq:
3555  * time.to_r -> a_rational
3556  *
3557  * Returns the value of _time_ as a rational number of seconds
3558  * since the Epoch.
3559  *
3560  * t = Time.now
3561  * t.to_r #=> (1270968792716287611/1000000000)
3562  *
3563  * This methods is intended to be used to get an accurate value
3564  * representing the nanoseconds since the Epoch. You can use this method
3565  * to convert _time_ to another Epoch.
3566  */
3567 
3568 static VALUE
3569 time_to_r(VALUE time)
3570 {
3571  struct time_object *tobj;
3572  VALUE v;
3573 
3574  GetTimeval(time, tobj);
3575  v = rb_time_unmagnify_to_rational(tobj->timew);
3576  if (!RB_TYPE_P(v, T_RATIONAL)) {
3577  v = rb_Rational1(v);
3578  }
3579  return v;
3580 }
3581 
3582 /*
3583  * call-seq:
3584  * time.usec -> int
3585  * time.tv_usec -> int
3586  *
3587  * Returns the number of microseconds for _time_.
3588  *
3589  * t = Time.now #=> 2007-11-19 08:03:26 -0600
3590  * "%10.6f" % t.to_f #=> "1195481006.775195"
3591  * t.usec #=> 775195
3592  */
3593 
3594 static VALUE
3595 time_usec(VALUE time)
3596 {
3597  struct time_object *tobj;
3598  wideval_t w, q, r;
3599 
3600  GetTimeval(time, tobj);
3601 
3602  w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
3603  wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
3604  return rb_to_int(w2v(q));
3605 }
3606 
3607 /*
3608  * call-seq:
3609  * time.nsec -> int
3610  * time.tv_nsec -> int
3611  *
3612  * Returns the number of nanoseconds for _time_.
3613  *
3614  * t = Time.now #=> 2007-11-17 15:18:03 +0900
3615  * "%10.9f" % t.to_f #=> "1195280283.536151409"
3616  * t.nsec #=> 536151406
3617  *
3618  * The lowest digits of #to_f and #nsec are different because
3619  * IEEE 754 double is not accurate enough to represent
3620  * the exact number of nanoseconds since the Epoch.
3621  *
3622  * The more accurate value is returned by #nsec.
3623  */
3624 
3625 static VALUE
3626 time_nsec(VALUE time)
3627 {
3628  struct time_object *tobj;
3629 
3630  GetTimeval(time, tobj);
3631  return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
3632 }
3633 
3634 /*
3635  * call-seq:
3636  * time.subsec -> number
3637  *
3638  * Returns the fraction for _time_.
3639  *
3640  * The return value can be a rational number.
3641  *
3642  * t = Time.now #=> 2009-03-26 22:33:12 +0900
3643  * "%10.9f" % t.to_f #=> "1238074392.940563917"
3644  * t.subsec #=> (94056401/100000000)
3645  *
3646  * The lowest digits of #to_f and #subsec are different because
3647  * IEEE 754 double is not accurate enough to represent
3648  * the rational number.
3649  *
3650  * The more accurate value is returned by #subsec.
3651  */
3652 
3653 static VALUE
3654 time_subsec(VALUE time)
3655 {
3656  struct time_object *tobj;
3657 
3658  GetTimeval(time, tobj);
3659  return quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
3660 }
3661 
3662 /*
3663  * call-seq:
3664  * time <=> other_time -> -1, 0, +1, or nil
3665  *
3666  * Comparison---Compares +time+ with +other_time+.
3667  *
3668  * -1, 0, +1 or nil depending on whether +time+ is less than, equal to, or
3669  * greater than +other_time+.
3670  *
3671  * +nil+ is returned if the two values are incomparable.
3672  *
3673  * t = Time.now #=> 2007-11-19 08:12:12 -0600
3674  * t2 = t + 2592000 #=> 2007-12-19 08:12:12 -0600
3675  * t <=> t2 #=> -1
3676  * t2 <=> t #=> 1
3677  *
3678  * t = Time.now #=> 2007-11-19 08:13:38 -0600
3679  * t2 = t + 0.1 #=> 2007-11-19 08:13:38 -0600
3680  * t.nsec #=> 98222999
3681  * t2.nsec #=> 198222999
3682  * t <=> t2 #=> -1
3683  * t2 <=> t #=> 1
3684  * t <=> t #=> 0
3685  */
3686 
3687 static VALUE
3688 time_cmp(VALUE time1, VALUE time2)
3689 {
3690  struct time_object *tobj1, *tobj2;
3691  int n;
3692 
3693  GetTimeval(time1, tobj1);
3694  if (IsTimeval(time2)) {
3695  GetTimeval(time2, tobj2);
3696  n = wcmp(tobj1->timew, tobj2->timew);
3697  }
3698  else {
3699  return rb_invcmp(time1, time2);
3700  }
3701  if (n == 0) return INT2FIX(0);
3702  if (n > 0) return INT2FIX(1);
3703  return INT2FIX(-1);
3704 }
3705 
3706 /*
3707  * call-seq:
3708  * time.eql?(other_time)
3709  *
3710  * Returns +true+ if _time_ and +other_time+ are
3711  * both Time objects with the same seconds and fractional seconds.
3712  */
3713 
3714 static VALUE
3715 time_eql(VALUE time1, VALUE time2)
3716 {
3717  struct time_object *tobj1, *tobj2;
3718 
3719  GetTimeval(time1, tobj1);
3720  if (IsTimeval(time2)) {
3721  GetTimeval(time2, tobj2);
3722  return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
3723  }
3724  return Qfalse;
3725 }
3726 
3727 /*
3728  * call-seq:
3729  * time.utc? -> true or false
3730  * time.gmt? -> true or false
3731  *
3732  * Returns +true+ if _time_ represents a time in UTC (GMT).
3733  *
3734  * t = Time.now #=> 2007-11-19 08:15:23 -0600
3735  * t.utc? #=> false
3736  * t = Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC
3737  * t.utc? #=> true
3738  *
3739  * t = Time.now #=> 2007-11-19 08:16:03 -0600
3740  * t.gmt? #=> false
3741  * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
3742  * t.gmt? #=> true
3743  */
3744 
3745 static VALUE
3746 time_utc_p(VALUE time)
3747 {
3748  struct time_object *tobj;
3749 
3750  GetTimeval(time, tobj);
3751  if (TZMODE_UTC_P(tobj)) return Qtrue;
3752  return Qfalse;
3753 }
3754 
3755 /*
3756  * call-seq:
3757  * time.hash -> integer
3758  *
3759  * Returns a hash code for this Time object.
3760  *
3761  * See also Object#hash.
3762  */
3763 
3764 static VALUE
3765 time_hash(VALUE time)
3766 {
3767  struct time_object *tobj;
3768 
3769  GetTimeval(time, tobj);
3770  return rb_hash(w2v(tobj->timew));
3771 }
3772 
3773 /* :nodoc: */
3774 static VALUE
3775 time_init_copy(VALUE copy, VALUE time)
3776 {
3777  struct time_object *tobj, *tcopy;
3778 
3779  if (!OBJ_INIT_COPY(copy, time)) return copy;
3780  GetTimeval(time, tobj);
3781  GetNewTimeval(copy, tcopy);
3782  MEMCPY(tcopy, tobj, struct time_object, 1);
3783 
3784  return copy;
3785 }
3786 
3787 static VALUE
3788 time_dup(VALUE time)
3789 {
3790  VALUE dup = time_s_alloc(rb_obj_class(time));
3791  time_init_copy(dup, time);
3792  return dup;
3793 }
3794 
3795 static VALUE
3796 time_localtime(VALUE time)
3797 {
3798  struct time_object *tobj;
3799  struct vtm vtm;
3800  VALUE zone;
3801 
3802  GetTimeval(time, tobj);
3803  if (TZMODE_LOCALTIME_P(tobj)) {
3804  if (tobj->tm_got)
3805  return time;
3806  }
3807  else {
3808  time_modify(time);
3809  }
3810 
3811  zone = tobj->vtm.zone;
3812  if (maybe_tzobj_p(zone) && zone_localtime(zone, time)) {
3813  return time;
3814  }
3815 
3816  if (!localtimew(tobj->timew, &vtm))
3817  rb_raise(rb_eArgError, "localtime error");
3818  tobj->vtm = vtm;
3819 
3820  tobj->tm_got = 1;
3821  TZMODE_SET_LOCALTIME(tobj);
3822  return time;
3823 }
3824 
3825 static VALUE
3826 time_zonelocal(VALUE time, VALUE off)
3827 {
3828  VALUE zone = off;
3829  if (zone_localtime(zone, time)) return time;
3830 
3831  if (NIL_P(off = utc_offset_arg(off))) {
3832  if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
3833  if (!zone_localtime(zone, time)) invalid_utc_offset();
3834  return time;
3835  }
3836  else if (off == UTC_ZONE) {
3837  return time_gmtime(time);
3838  }
3839  validate_utc_offset(off);
3840 
3841  time_set_utc_offset(time, off);
3842  return time_fixoff(time);
3843 }
3844 
3845 /*
3846  * call-seq:
3847  * time.localtime -> time
3848  * time.localtime(utc_offset) -> time
3849  *
3850  * Converts _time_ to local time (using the local time zone in
3851  * effect at the creation time of _time_) modifying the receiver.
3852  *
3853  * If +utc_offset+ is given, it is used instead of the local time.
3854  *
3855  * t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC
3856  * t.utc? #=> true
3857  *
3858  * t.localtime #=> 2000-01-01 14:15:01 -0600
3859  * t.utc? #=> false
3860  *
3861  * t.localtime("+09:00") #=> 2000-01-02 05:15:01 +0900
3862  * t.utc? #=> false
3863  *
3864  * If +utc_offset+ is not given and _time_ is local time, just returns
3865  * the receiver.
3866  */
3867 
3868 static VALUE
3869 time_localtime_m(int argc, VALUE *argv, VALUE time)
3870 {
3871  VALUE off;
3872 
3873  if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
3874  return time_zonelocal(time, off);
3875  }
3876 
3877  return time_localtime(time);
3878 }
3879 
3880 /*
3881  * call-seq:
3882  * time.gmtime -> time
3883  * time.utc -> time
3884  *
3885  * Converts _time_ to UTC (GMT), modifying the receiver.
3886  *
3887  * t = Time.now #=> 2007-11-19 08:18:31 -0600
3888  * t.gmt? #=> false
3889  * t.gmtime #=> 2007-11-19 14:18:31 UTC
3890  * t.gmt? #=> true
3891  *
3892  * t = Time.now #=> 2007-11-19 08:18:51 -0600
3893  * t.utc? #=> false
3894  * t.utc #=> 2007-11-19 14:18:51 UTC
3895  * t.utc? #=> true
3896  */
3897 
3898 static VALUE
3899 time_gmtime(VALUE time)
3900 {
3901  struct time_object *tobj;
3902  struct vtm vtm;
3903 
3904  GetTimeval(time, tobj);
3905  if (TZMODE_UTC_P(tobj)) {
3906  if (tobj->tm_got)
3907  return time;
3908  }
3909  else {
3910  time_modify(time);
3911  }
3912 
3913  vtm.zone = rb_fstring_lit("UTC");
3914  GMTIMEW(tobj->timew, &vtm);
3915  tobj->vtm = vtm;
3916 
3917  tobj->tm_got = 1;
3918  TZMODE_SET_UTC(tobj);
3919  return time;
3920 }
3921 
3922 static VALUE
3923 time_fixoff(VALUE time)
3924 {
3925  struct time_object *tobj;
3926  struct vtm vtm;
3927  VALUE off, zone;
3928 
3929  GetTimeval(time, tobj);
3930  if (TZMODE_FIXOFF_P(tobj)) {
3931  if (tobj->tm_got)
3932  return time;
3933  }
3934  else {
3935  time_modify(time);
3936  }
3937 
3938  if (TZMODE_FIXOFF_P(tobj))
3939  off = tobj->vtm.utc_offset;
3940  else
3941  off = INT2FIX(0);
3942 
3943  GMTIMEW(tobj->timew, &vtm);
3944 
3945  zone = tobj->vtm.zone;
3946  tobj->vtm = vtm;
3947  tobj->vtm.zone = zone;
3948  vtm_add_offset(&tobj->vtm, off, +1);
3949 
3950  tobj->tm_got = 1;
3951  TZMODE_SET_FIXOFF(tobj, off);
3952  return time;
3953 }
3954 
3955 /*
3956  * call-seq:
3957  * time.getlocal -> new_time
3958  * time.getlocal(utc_offset) -> new_time
3959  * time.getlocal(timezone) -> new_time
3960  *
3961  * Returns a new Time object representing _time_ in
3962  * local time (using the local time zone in effect for this process).
3963  *
3964  * If +utc_offset+ is given, it is used instead of the local time.
3965  * +utc_offset+ can be given as a human-readable string (eg. <code>"+09:00"</code>)
3966  * or as a number of seconds (eg. <code>32400</code>).
3967  *
3968  * t = Time.utc(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
3969  * t.utc? #=> true
3970  *
3971  * l = t.getlocal #=> 2000-01-01 14:15:01 -0600
3972  * l.utc? #=> false
3973  * t == l #=> true
3974  *
3975  * j = t.getlocal("+09:00") #=> 2000-01-02 05:15:01 +0900
3976  * j.utc? #=> false
3977  * t == j #=> true
3978  *
3979  * k = t.getlocal(9*60*60) #=> 2000-01-02 05:15:01 +0900
3980  * k.utc? #=> false
3981  * t == k #=> true
3982  */
3983 
3984 static VALUE
3985 time_getlocaltime(int argc, VALUE *argv, VALUE time)
3986 {
3987  VALUE off;
3988 
3989  if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
3990  VALUE zone = off;
3991  if (maybe_tzobj_p(zone)) {
3992  VALUE t = time_dup(time);
3993  if (zone_localtime(off, t)) return t;
3994  }
3995 
3996  if (NIL_P(off = utc_offset_arg(off))) {
3997  if (NIL_P(zone = find_timezone(time, zone))) invalid_utc_offset();
3998  time = time_dup(time);
3999  if (!zone_localtime(zone, time)) invalid_utc_offset();
4000  return time;
4001  }
4002  else if (off == UTC_ZONE) {
4003  return time_gmtime(time_dup(time));
4004  }
4005  validate_utc_offset(off);
4006 
4007  time = time_dup(time);
4008  time_set_utc_offset(time, off);
4009  return time_fixoff(time);
4010  }
4011 
4012  return time_localtime(time_dup(time));
4013 }
4014 
4015 /*
4016  * call-seq:
4017  * time.getgm -> new_time
4018  * time.getutc -> new_time
4019  *
4020  * Returns a new Time object representing _time_ in UTC.
4021  *
4022  * t = Time.local(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 -0600
4023  * t.gmt? #=> false
4024  * y = t.getgm #=> 2000-01-02 02:15:01 UTC
4025  * y.gmt? #=> true
4026  * t == y #=> true
4027  */
4028 
4029 static VALUE
4030 time_getgmtime(VALUE time)
4031 {
4032  return time_gmtime(time_dup(time));
4033 }
4034 
4035 static VALUE
4036 time_get_tm(VALUE time, struct time_object *tobj)
4037 {
4038  if (TZMODE_UTC_P(tobj)) return time_gmtime(time);
4039  if (TZMODE_FIXOFF_P(tobj)) return time_fixoff(time);
4040  return time_localtime(time);
4041 }
4042 
4043 static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc);
4044 #define strftimev(fmt, time, enc) strftime_cstr((fmt), rb_strlen_lit(fmt), (time), (enc))
4045 
4046 /*
4047  * call-seq:
4048  * time.asctime -> string
4049  * time.ctime -> string
4050  *
4051  * Returns a canonical string representation of _time_.
4052  *
4053  * Time.now.asctime #=> "Wed Apr 9 08:56:03 2003"
4054  * Time.now.ctime #=> "Wed Apr 9 08:56:03 2003"
4055  */
4056 
4057 static VALUE
4058 time_asctime(VALUE time)
4059 {
4060  return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
4061 }
4062 
4063 /*
4064  * call-seq:
4065  * time.to_s -> string
4066  *
4067  * Returns a string representing _time_. Equivalent to calling
4068  * #strftime with the appropriate format string.
4069  *
4070  * t = Time.now
4071  * t.to_s #=> "2012-11-10 18:16:12 +0100"
4072  * t.strftime "%Y-%m-%d %H:%M:%S %z" #=> "2012-11-10 18:16:12 +0100"
4073  *
4074  * t.utc.to_s #=> "2012-11-10 17:16:12 UTC"
4075  * t.strftime "%Y-%m-%d %H:%M:%S UTC" #=> "2012-11-10 17:16:12 UTC"
4076  */
4077 
4078 static VALUE
4079 time_to_s(VALUE time)
4080 {
4081  struct time_object *tobj;
4082 
4083  GetTimeval(time, tobj);
4084  if (TZMODE_UTC_P(tobj))
4085  return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
4086  else
4087  return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
4088 }
4089 
4090 /*
4091  * call-seq:
4092  * time.inspect -> string
4093  *
4094  * Returns a detailed string representing _time_. Unlike to_s,
4095  * preserves nanoseconds in the representation for easier debugging.
4096  *
4097  * t = Time.now
4098  * t.inspect #=> "2012-11-10 18:16:12.261257655 +0100"
4099  * t.strftime "%Y-%m-%d %H:%M:%S.%N %z" #=> "2012-11-10 18:16:12.261257655 +0100"
4100  *
4101  * t.utc.inspect #=> "2012-11-10 17:16:12.261257655 UTC"
4102  * t.strftime "%Y-%m-%d %H:%M:%S.%N UTC" #=> "2012-11-10 17:16:12.261257655 UTC"
4103  */
4104 
4105 static VALUE
4106 time_inspect(VALUE time)
4107 {
4108  struct time_object *tobj;
4109  VALUE str, subsec;
4110 
4111  GetTimeval(time, tobj);
4112  str = strftimev("%Y-%m-%d %H:%M:%S", time, rb_usascii_encoding());
4113  subsec = w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE)));
4114  if (FIXNUM_P(subsec) && FIX2LONG(subsec) == 0) {
4115  }
4116  else if (FIXNUM_P(subsec) && FIX2LONG(subsec) < TIME_SCALE) {
4117  long len;
4118  str = rb_enc_sprintf(rb_usascii_encoding(), "%"PRIsVALUE".%09ld", str, FIX2LONG(subsec));
4119  for (len=RSTRING_LEN(str); RSTRING_PTR(str)[len-1] == '0' && len > 0; len--)
4120  ;
4121  rb_str_resize(str, len);
4122  }
4123  else {
4124  rb_str_cat_cstr(str, " ");
4125  subsec = quov(subsec, INT2FIX(TIME_SCALE));
4127  }
4128  if (TZMODE_UTC_P(tobj)) {
4129  rb_str_cat_cstr(str, " UTC");
4130  }
4131  else {
4133  }
4134  return str;
4135 }
4136 
4137 static VALUE
4138 time_add0(VALUE klass, const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
4139 {
4140  VALUE result;
4141  struct time_object *result_tobj;
4142 
4143  offset = num_exact(offset);
4144  if (sign < 0)
4145  result = time_new_timew(klass, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
4146  else
4147  result = time_new_timew(klass, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
4148  GetTimeval(result, result_tobj);
4149  TZMODE_COPY(result_tobj, tobj);
4150 
4151  return result;
4152 }
4153 
4154 static VALUE
4155 time_add(const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
4156 {
4157  return time_add0(rb_cTime, tobj, torig, offset, sign);
4158 }
4159 
4160 /*
4161  * call-seq:
4162  * time + numeric -> time
4163  *
4164  * Addition --- Adds some number of seconds (possibly fractional) to
4165  * _time_ and returns that value as a new Time object.
4166  *
4167  * t = Time.now #=> 2007-11-19 08:22:21 -0600
4168  * t + (60 * 60 * 24) #=> 2007-11-20 08:22:21 -0600
4169  */
4170 
4171 static VALUE
4172 time_plus(VALUE time1, VALUE time2)
4173 {
4174  struct time_object *tobj;
4175  GetTimeval(time1, tobj);
4176 
4177  if (IsTimeval(time2)) {
4178  rb_raise(rb_eTypeError, "time + time?");
4179  }
4180  return time_add(tobj, time1, time2, 1);
4181 }
4182 
4183 /*
4184  * call-seq:
4185  * time - other_time -> float
4186  * time - numeric -> time
4187  *
4188  * Difference --- Returns a difference in seconds as a Float
4189  * between _time_ and +other_time+, or subtracts the given number
4190  * of seconds in +numeric+ from _time_.
4191  *
4192  * t = Time.now #=> 2007-11-19 08:23:10 -0600
4193  * t2 = t + 2592000 #=> 2007-12-19 08:23:10 -0600
4194  * t2 - t #=> 2592000.0
4195  * t2 - 2592000 #=> 2007-11-19 08:23:10 -0600
4196  */
4197 
4198 static VALUE
4199 time_minus(VALUE time1, VALUE time2)
4200 {
4201  struct time_object *tobj;
4202 
4203  GetTimeval(time1, tobj);
4204  if (IsTimeval(time2)) {
4205  struct time_object *tobj2;
4206 
4207  GetTimeval(time2, tobj2);
4208  return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
4209  }
4210  return time_add(tobj, time1, time2, -1);
4211 }
4212 
4213 /*
4214  * call-seq:
4215  * time.succ -> new_time
4216  *
4217  * Returns a new Time object, one second later than _time_.
4218  * Time#succ is obsolete since 1.9.2 for time is not a discrete value.
4219  *
4220  * t = Time.now #=> 2007-11-19 08:23:57 -0600
4221  * t.succ #=> 2007-11-19 08:23:58 -0600
4222  *
4223  * Use instead <code>time + 1</code>
4224  *
4225  * t + 1 #=> 2007-11-19 08:23:58 -0600
4226  */
4227 
4228 VALUE
4230 {
4231  struct time_object *tobj;
4232  struct time_object *tobj2;
4233 
4234  rb_warn("Time#succ is obsolete; use time + 1");
4235  GetTimeval(time, tobj);
4236  time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE)));
4237  GetTimeval(time, tobj2);
4238  TZMODE_COPY(tobj2, tobj);
4239  if (TZMODE_LOCALTIME_P(tobj2) && maybe_tzobj_p(tobj2->vtm.zone)) {
4240  zone_localtime(tobj2->vtm.zone, time);
4241  }
4242  return time;
4243 }
4244 
4245 #define time_succ rb_time_succ
4246 
4247 static VALUE
4248 ndigits_denominator(VALUE ndigits)
4249 {
4250  long nd = NUM2LONG(ndigits);
4251 
4252  if (nd < 0) {
4253  rb_raise(rb_eArgError, "negative ndigits given");
4254  }
4255  if (nd == 0) {
4256  return INT2FIX(1);
4257  }
4258  return rb_rational_new(INT2FIX(1),
4259  rb_int_positive_pow(10, (unsigned long)nd));
4260 }
4261 
4262 /*
4263  * call-seq:
4264  * time.round([ndigits]) -> new_time
4265  *
4266  * Rounds sub seconds to a given precision in decimal digits (0 digits by default).
4267  * It returns a new Time object.
4268  * +ndigits+ should be zero or a positive integer.
4269  *
4270  * require 'time'
4271  *
4272  * t = Time.utc(2010,3,30, 5,43,25.123456789r)
4273  * t.iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
4274  * t.round.iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
4275  * t.round(0).iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
4276  * t.round(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z"
4277  * t.round(2).iso8601(10) #=> "2010-03-30T05:43:25.1200000000Z"
4278  * t.round(3).iso8601(10) #=> "2010-03-30T05:43:25.1230000000Z"
4279  * t.round(4).iso8601(10) #=> "2010-03-30T05:43:25.1235000000Z"
4280  *
4281  * t = Time.utc(1999,12,31, 23,59,59)
4282  * (t + 0.4).round.iso8601(3) #=> "1999-12-31T23:59:59.000Z"
4283  * (t + 0.49).round.iso8601(3) #=> "1999-12-31T23:59:59.000Z"
4284  * (t + 0.5).round.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4285  * (t + 1.4).round.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4286  * (t + 1.49).round.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4287  * (t + 1.5).round.iso8601(3) #=> "2000-01-01T00:00:01.000Z"
4288  *
4289  * t = Time.utc(1999,12,31, 23,59,59)
4290  * (t + 0.123456789).round(4).iso8601(6) #=> "1999-12-31T23:59:59.123500Z"
4291  */
4292 
4293 static VALUE
4294 time_round(int argc, VALUE *argv, VALUE time)
4295 {
4296  VALUE ndigits, v, den;
4297  struct time_object *tobj;
4298 
4299  if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4300  den = INT2FIX(1);
4301  else
4302  den = ndigits_denominator(ndigits);
4303 
4304  GetTimeval(time, tobj);
4305  v = w2v(rb_time_unmagnify(tobj->timew));
4306 
4307  v = modv(v, den);
4308  if (lt(v, quov(den, INT2FIX(2))))
4309  return time_add(tobj, time, v, -1);
4310  else
4311  return time_add(tobj, time, subv(den, v), 1);
4312 }
4313 
4314 /*
4315  * call-seq:
4316  * time.floor([ndigits]) -> new_time
4317  *
4318  * Floors sub seconds to a given precision in decimal digits (0 digits by default).
4319  * It returns a new Time object.
4320  * +ndigits+ should be zero or a positive integer.
4321  *
4322  * require 'time'
4323  *
4324  * t = Time.utc(2010,3,30, 5,43,25.123456789r)
4325  * t.iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z"
4326  * t.floor.iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
4327  * t.floor(0).iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z"
4328  * t.floor(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z"
4329  * t.floor(2).iso8601(10) #=> "2010-03-30T05:43:25.1200000000Z"
4330  * t.floor(3).iso8601(10) #=> "2010-03-30T05:43:25.1230000000Z"
4331  * t.floor(4).iso8601(10) #=> "2010-03-30T05:43:25.1234000000Z"
4332  *
4333  * t = Time.utc(1999,12,31, 23,59,59)
4334  * (t + 0.4).floor.iso8601(3) #=> "1999-12-31T23:59:59.000Z"
4335  * (t + 0.9).floor.iso8601(3) #=> "1999-12-31T23:59:59.000Z"
4336  * (t + 1.4).floor.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4337  * (t + 1.9).floor.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4338  *
4339  * t = Time.utc(1999,12,31, 23,59,59)
4340  * (t + 0.123456789).floor(4).iso8601(6) #=> "1999-12-31T23:59:59.123400Z"
4341  */
4342 
4343 static VALUE
4344 time_floor(int argc, VALUE *argv, VALUE time)
4345 {
4346  VALUE ndigits, v, den;
4347  struct time_object *tobj;
4348 
4349  if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4350  den = INT2FIX(1);
4351  else
4352  den = ndigits_denominator(ndigits);
4353 
4354  GetTimeval(time, tobj);
4355  v = w2v(rb_time_unmagnify(tobj->timew));
4356 
4357  v = modv(v, den);
4358  return time_add(tobj, time, v, -1);
4359 }
4360 
4361 /*
4362  * call-seq:
4363  * time.ceil([ndigits]) -> new_time
4364  *
4365  * Ceils sub seconds to a given precision in decimal digits (0 digits by default).
4366  * It returns a new Time object.
4367  * +ndigits+ should be zero or a positive integer.
4368  *
4369  * require 'time'
4370  *
4371  * t = Time.utc(2010,3,30, 5,43,25.0123456789r)
4372  * t.iso8601(10) #=> "2010-03-30T05:43:25.0123456789Z"
4373  * t.ceil.iso8601(10) #=> "2010-03-30T05:43:26.0000000000Z"
4374  * t.ceil(0).iso8601(10) #=> "2010-03-30T05:43:26.0000000000Z"
4375  * t.ceil(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z"
4376  * t.ceil(2).iso8601(10) #=> "2010-03-30T05:43:25.0200000000Z"
4377  * t.ceil(3).iso8601(10) #=> "2010-03-30T05:43:25.0130000000Z"
4378  * t.ceil(4).iso8601(10) #=> "2010-03-30T05:43:25.0124000000Z"
4379  *
4380  * t = Time.utc(1999,12,31, 23,59,59)
4381  * (t + 0.4).ceil.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4382  * (t + 0.9).ceil.iso8601(3) #=> "2000-01-01T00:00:00.000Z"
4383  * (t + 1.4).ceil.iso8601(3) #=> "2000-01-01T00:00:01.000Z"
4384  * (t + 1.9).ceil.iso8601(3) #=> "2000-01-01T00:00:01.000Z"
4385  *
4386  * t = Time.utc(1999,12,31, 23,59,59)
4387  * (t + 0.123456789).ceil(4).iso8601(6) #=> "1999-12-31T23:59:59.123500Z"
4388  */
4389 
4390 static VALUE
4391 time_ceil(int argc, VALUE *argv, VALUE time)
4392 {
4393  VALUE ndigits, v, den;
4394  struct time_object *tobj;
4395 
4396  if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4397  den = INT2FIX(1);
4398  else
4399  den = ndigits_denominator(ndigits);
4400 
4401  GetTimeval(time, tobj);
4402  v = w2v(rb_time_unmagnify(tobj->timew));
4403 
4404  v = modv(v, den);
4405  return time_add(tobj, time, subv(den, v), 1);
4406 }
4407 
4408 /*
4409  * call-seq:
4410  * time.sec -> integer
4411  *
4412  * Returns the second of the minute (0..60) for _time_.
4413  *
4414  * *Note:* Seconds range from zero to 60 to allow the system to inject
4415  * leap seconds. See http://en.wikipedia.org/wiki/Leap_second for further
4416  * details.
4417  *
4418  * t = Time.now #=> 2007-11-19 08:25:02 -0600
4419  * t.sec #=> 2
4420  */
4421 
4422 static VALUE
4423 time_sec(VALUE time)
4424 {
4425  struct time_object *tobj;
4426 
4427  GetTimeval(time, tobj);
4428  MAKE_TM(time, tobj);
4429  return INT2FIX(tobj->vtm.sec);
4430 }
4431 
4432 /*
4433  * call-seq:
4434  * time.min -> integer
4435  *
4436  * Returns the minute of the hour (0..59) for _time_.
4437  *
4438  * t = Time.now #=> 2007-11-19 08:25:51 -0600
4439  * t.min #=> 25
4440  */
4441 
4442 static VALUE
4443 time_min(VALUE time)
4444 {
4445  struct time_object *tobj;
4446 
4447  GetTimeval(time, tobj);
4448  MAKE_TM(time, tobj);
4449  return INT2FIX(tobj->vtm.min);
4450 }
4451 
4452 /*
4453  * call-seq:
4454  * time.hour -> integer
4455  *
4456  * Returns the hour of the day (0..23) for _time_.
4457  *
4458  * t = Time.now #=> 2007-11-19 08:26:20 -0600
4459  * t.hour #=> 8
4460  */
4461 
4462 static VALUE
4463 time_hour(VALUE time)
4464 {
4465  struct time_object *tobj;
4466 
4467  GetTimeval(time, tobj);
4468  MAKE_TM(time, tobj);
4469  return INT2FIX(tobj->vtm.hour);
4470 }
4471 
4472 /*
4473  * call-seq:
4474  * time.day -> integer
4475  * time.mday -> integer
4476  *
4477  * Returns the day of the month (1..n) for _time_.
4478  *
4479  * t = Time.now #=> 2007-11-19 08:27:03 -0600
4480  * t.day #=> 19
4481  * t.mday #=> 19
4482  */
4483 
4484 static VALUE
4485 time_mday(VALUE time)
4486 {
4487  struct time_object *tobj;
4488 
4489  GetTimeval(time, tobj);
4490  MAKE_TM(time, tobj);
4491  return INT2FIX(tobj->vtm.mday);
4492 }
4493 
4494 /*
4495  * call-seq:
4496  * time.mon -> integer
4497  * time.month -> integer
4498  *
4499  * Returns the month of the year (1..12) for _time_.
4500  *
4501  * t = Time.now #=> 2007-11-19 08:27:30 -0600
4502  * t.mon #=> 11
4503  * t.month #=> 11
4504  */
4505 
4506 static VALUE
4507 time_mon(VALUE time)
4508 {
4509  struct time_object *tobj;
4510 
4511  GetTimeval(time, tobj);
4512  MAKE_TM(time, tobj);
4513  return INT2FIX(tobj->vtm.mon);
4514 }
4515 
4516 /*
4517  * call-seq:
4518  * time.year -> integer
4519  *
4520  * Returns the year for _time_ (including the century).
4521  *
4522  * t = Time.now #=> 2007-11-19 08:27:51 -0600
4523  * t.year #=> 2007
4524  */
4525 
4526 static VALUE
4527 time_year(VALUE time)
4528 {
4529  struct time_object *tobj;
4530 
4531  GetTimeval(time, tobj);
4532  MAKE_TM(time, tobj);
4533  return tobj->vtm.year;
4534 }
4535 
4536 /*
4537  * call-seq:
4538  * time.wday -> integer
4539  *
4540  * Returns an integer representing the day of the week, 0..6, with
4541  * Sunday == 0.
4542  *
4543  * t = Time.now #=> 2007-11-20 02:35:35 -0600
4544  * t.wday #=> 2
4545  * t.sunday? #=> false
4546  * t.monday? #=> false
4547  * t.tuesday? #=> true
4548  * t.wednesday? #=> false
4549  * t.thursday? #=> false
4550  * t.friday? #=> false
4551  * t.saturday? #=> false
4552  */
4553 
4554 static VALUE
4555 time_wday(VALUE time)
4556 {
4557  struct time_object *tobj;
4558 
4559  GetTimeval(time, tobj);
4560  MAKE_TM(time, tobj);
4561  return INT2FIX((int)tobj->vtm.wday);
4562 }
4563 
4564 #define wday_p(n) {\
4565  struct time_object *tobj;\
4566  GetTimeval(time, tobj);\
4567  MAKE_TM(time, tobj);\
4568  return (tobj->vtm.wday == (n)) ? Qtrue : Qfalse;\
4569 }
4570 
4571 /*
4572  * call-seq:
4573  * time.sunday? -> true or false
4574  *
4575  * Returns +true+ if _time_ represents Sunday.
4576  *
4577  * t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600
4578  * t.sunday? #=> true
4579  */
4580 
4581 static VALUE
4582 time_sunday(VALUE time)
4583 {
4584  wday_p(0);
4585 }
4586 
4587 /*
4588  * call-seq:
4589  * time.monday? -> true or false
4590  *
4591  * Returns +true+ if _time_ represents Monday.
4592  *
4593  * t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500
4594  * t.monday? #=> true
4595  */
4596 
4597 static VALUE
4598 time_monday(VALUE time)
4599 {
4600  wday_p(1);
4601 }
4602 
4603 /*
4604  * call-seq:
4605  * time.tuesday? -> true or false
4606  *
4607  * Returns +true+ if _time_ represents Tuesday.
4608  *
4609  * t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600
4610  * t.tuesday? #=> true
4611  */
4612 
4613 static VALUE
4614 time_tuesday(VALUE time)
4615 {
4616  wday_p(2);
4617 }
4618 
4619 /*
4620  * call-seq:
4621  * time.wednesday? -> true or false
4622  *
4623  * Returns +true+ if _time_ represents Wednesday.
4624  *
4625  * t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600
4626  * t.wednesday? #=> true
4627  */
4628 
4629 static VALUE
4630 time_wednesday(VALUE time)
4631 {
4632  wday_p(3);
4633 }
4634 
4635 /*
4636  * call-seq:
4637  * time.thursday? -> true or false
4638  *
4639  * Returns +true+ if _time_ represents Thursday.
4640  *
4641  * t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600
4642  * t.thursday? #=> true
4643  */
4644 
4645 static VALUE
4646 time_thursday(VALUE time)
4647 {
4648  wday_p(4);
4649 }
4650 
4651 /*
4652  * call-seq:
4653  * time.friday? -> true or false
4654  *
4655  * Returns +true+ if _time_ represents Friday.
4656  *
4657  * t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600
4658  * t.friday? #=> true
4659  */
4660 
4661 static VALUE
4662 time_friday(VALUE time)
4663 {
4664  wday_p(5);
4665 }
4666 
4667 /*
4668  * call-seq:
4669  * time.saturday? -> true or false
4670  *
4671  * Returns +true+ if _time_ represents Saturday.
4672  *
4673  * t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500
4674  * t.saturday? #=> true
4675  */
4676 
4677 static VALUE
4678 time_saturday(VALUE time)
4679 {
4680  wday_p(6);
4681 }
4682 
4683 /*
4684  * call-seq:
4685  * time.yday -> integer
4686  *
4687  * Returns an integer representing the day of the year, 1..366.
4688  *
4689  * t = Time.now #=> 2007-11-19 08:32:31 -0600
4690  * t.yday #=> 323
4691  */
4692 
4693 static VALUE
4694 time_yday(VALUE time)
4695 {
4696  struct time_object *tobj;
4697 
4698  GetTimeval(time, tobj);
4699  MAKE_TM(time, tobj);
4700  return INT2FIX(tobj->vtm.yday);
4701 }
4702 
4703 /*
4704  * call-seq:
4705  * time.isdst -> true or false
4706  * time.dst? -> true or false
4707  *
4708  * Returns +true+ if _time_ occurs during Daylight
4709  * Saving Time in its time zone.
4710  *
4711  * # CST6CDT:
4712  * Time.local(2000, 1, 1).zone #=> "CST"
4713  * Time.local(2000, 1, 1).isdst #=> false
4714  * Time.local(2000, 1, 1).dst? #=> false
4715  * Time.local(2000, 7, 1).zone #=> "CDT"
4716  * Time.local(2000, 7, 1).isdst #=> true
4717  * Time.local(2000, 7, 1).dst? #=> true
4718  *
4719  * # Asia/Tokyo:
4720  * Time.local(2000, 1, 1).zone #=> "JST"
4721  * Time.local(2000, 1, 1).isdst #=> false
4722  * Time.local(2000, 1, 1).dst? #=> false
4723  * Time.local(2000, 7, 1).zone #=> "JST"
4724  * Time.local(2000, 7, 1).isdst #=> false
4725  * Time.local(2000, 7, 1).dst? #=> false
4726  */
4727 
4728 static VALUE
4729 time_isdst(VALUE time)
4730 {
4731  struct time_object *tobj;
4732 
4733  GetTimeval(time, tobj);
4734  MAKE_TM(time, tobj);
4735  if (tobj->vtm.isdst == VTM_ISDST_INITVAL) {
4736  rb_raise(rb_eRuntimeError, "isdst is not set yet");
4737  }
4738  return tobj->vtm.isdst ? Qtrue : Qfalse;
4739 }
4740 
4741 /*
4742  * call-seq:
4743  * time.zone -> string or timezone
4744  *
4745  * Returns the name of the time zone used for _time_. As of Ruby
4746  * 1.8, returns ``UTC'' rather than ``GMT'' for UTC times.
4747  *
4748  * t = Time.gm(2000, "jan", 1, 20, 15, 1)
4749  * t.zone #=> "UTC"
4750  * t = Time.local(2000, "jan", 1, 20, 15, 1)
4751  * t.zone #=> "CST"
4752  */
4753 
4754 static VALUE
4755 time_zone(VALUE time)
4756 {
4757  struct time_object *tobj;
4758  VALUE zone;
4759 
4760  GetTimeval(time, tobj);
4761  MAKE_TM(time, tobj);
4762 
4763  if (TZMODE_UTC_P(tobj)) {
4764  return rb_usascii_str_new_cstr("UTC");
4765  }
4766  zone = tobj->vtm.zone;
4767  if (NIL_P(zone))
4768  return Qnil;
4769 
4770  if (RB_TYPE_P(zone, T_STRING))
4771  zone = rb_str_dup(zone);
4772  return zone;
4773 }
4774 
4775 /*
4776  * call-seq:
4777  * time.gmt_offset -> integer
4778  * time.gmtoff -> integer
4779  * time.utc_offset -> integer
4780  *
4781  * Returns the offset in seconds between the timezone of _time_
4782  * and UTC.
4783  *
4784  * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC
4785  * t.gmt_offset #=> 0
4786  * l = t.getlocal #=> 2000-01-01 14:15:01 -0600
4787  * l.gmt_offset #=> -21600
4788  */
4789 
4790 VALUE
4792 {
4793  struct time_object *tobj;
4794 
4795  GetTimeval(time, tobj);
4796 
4797  if (TZMODE_UTC_P(tobj)) {
4798  return INT2FIX(0);
4799  }
4800  else {
4801  MAKE_TM(time, tobj);
4802  return tobj->vtm.utc_offset;
4803  }
4804 }
4805 
4806 /*
4807  * call-seq:
4808  * time.to_a -> array
4809  *
4810  * Returns a ten-element _array_ of values for _time_:
4811  *
4812  * [sec, min, hour, day, month, year, wday, yday, isdst, zone]
4813  *
4814  * See the individual methods for an explanation of the
4815  * valid ranges of each value. The ten elements can be passed directly
4816  * to Time::utc or Time::local to create a
4817  * new Time object.
4818  *
4819  * t = Time.now #=> 2007-11-19 08:36:01 -0600
4820  * now = t.to_a #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"]
4821  */
4822 
4823 static VALUE
4824 time_to_a(VALUE time)
4825 {
4826  struct time_object *tobj;
4827 
4828  GetTimeval(time, tobj);
4829  MAKE_TM(time, tobj);
4830  return rb_ary_new3(10,
4831  INT2FIX(tobj->vtm.sec),
4832  INT2FIX(tobj->vtm.min),
4833  INT2FIX(tobj->vtm.hour),
4834  INT2FIX(tobj->vtm.mday),
4835  INT2FIX(tobj->vtm.mon),
4836  tobj->vtm.year,
4837  INT2FIX(tobj->vtm.wday),
4838  INT2FIX(tobj->vtm.yday),
4839  tobj->vtm.isdst?Qtrue:Qfalse,
4840  time_zone(time));
4841 }
4842 
4843 static VALUE
4844 rb_strftime_alloc(const char *format, size_t format_len, rb_encoding *enc,
4845  VALUE time, struct vtm *vtm, wideval_t timew, int gmt)
4846 {
4847  VALUE timev = Qnil;
4848  struct timespec ts;
4849 
4850  if (!timew2timespec_exact(timew, &ts))
4851  timev = w2v(rb_time_unmagnify(timew));
4852 
4853  if (NIL_P(timev)) {
4854  return rb_strftime_timespec(format, format_len, enc, time, vtm, &ts, gmt);
4855  }
4856  else {
4857  return rb_strftime(format, format_len, enc, time, vtm, timev, gmt);
4858  }
4859 }
4860 
4861 static VALUE
4862 strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc)
4863 {
4864  struct time_object *tobj;
4865  VALUE str;
4866 
4867  GetTimeval(time, tobj);
4868  MAKE_TM(time, tobj);
4869  str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj));
4870  if (!str) rb_raise(rb_eArgError, "invalid format: %s", fmt);
4871  return str;
4872 }
4873 
4874 /*
4875  * call-seq:
4876  * time.strftime( string ) -> string
4877  *
4878  * Formats _time_ according to the directives in the given format string.
4879  *
4880  * The directives begin with a percent (%) character.
4881  * Any text not listed as a directive will be passed through to the
4882  * output string.
4883  *
4884  * The directive consists of a percent (%) character,
4885  * zero or more flags, optional minimum field width,
4886  * optional modifier and a conversion specifier
4887  * as follows:
4888  *
4889  * %<flags><width><modifier><conversion>
4890  *
4891  * Flags:
4892  * - don't pad a numerical output
4893  * _ use spaces for padding
4894  * 0 use zeros for padding
4895  * ^ upcase the result string
4896  * # change case
4897  * : use colons for %z
4898  *
4899  * The minimum field width specifies the minimum width.
4900  *
4901  * The modifiers are "E" and "O".
4902  * They are ignored.
4903  *
4904  * Format directives:
4905  *
4906  * Date (Year, Month, Day):
4907  * %Y - Year with century if provided, will pad result at least 4 digits.
4908  * -0001, 0000, 1995, 2009, 14292, etc.
4909  * %C - year / 100 (rounded down such as 20 in 2009)
4910  * %y - year % 100 (00..99)
4911  *
4912  * %m - Month of the year, zero-padded (01..12)
4913  * %_m blank-padded ( 1..12)
4914  * %-m no-padded (1..12)
4915  * %B - The full month name (``January'')
4916  * %^B uppercased (``JANUARY'')
4917  * %b - The abbreviated month name (``Jan'')
4918  * %^b uppercased (``JAN'')
4919  * %h - Equivalent to %b
4920  *
4921  * %d - Day of the month, zero-padded (01..31)
4922  * %-d no-padded (1..31)
4923  * %e - Day of the month, blank-padded ( 1..31)
4924  *
4925  * %j - Day of the year (001..366)
4926  *
4927  * Time (Hour, Minute, Second, Subsecond):
4928  * %H - Hour of the day, 24-hour clock, zero-padded (00..23)
4929  * %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
4930  * %I - Hour of the day, 12-hour clock, zero-padded (01..12)
4931  * %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
4932  * %P - Meridian indicator, lowercase (``am'' or ``pm'')
4933  * %p - Meridian indicator, uppercase (``AM'' or ``PM'')
4934  *
4935  * %M - Minute of the hour (00..59)
4936  *
4937  * %S - Second of the minute (00..60)
4938  *
4939  * %L - Millisecond of the second (000..999)
4940  * The digits under millisecond are truncated to not produce 1000.
4941  * %N - Fractional seconds digits, default is 9 digits (nanosecond)
4942  * %3N millisecond (3 digits)
4943  * %6N microsecond (6 digits)
4944  * %9N nanosecond (9 digits)
4945  * %12N picosecond (12 digits)
4946  * %15N femtosecond (15 digits)
4947  * %18N attosecond (18 digits)
4948  * %21N zeptosecond (21 digits)
4949  * %24N yoctosecond (24 digits)
4950  * The digits under the specified length are truncated to avoid
4951  * carry up.
4952  *
4953  * Time zone:
4954  * %z - Time zone as hour and minute offset from UTC (e.g. +0900)
4955  * %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
4956  * %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
4957  * %Z - Abbreviated time zone name or similar information. (OS dependent)
4958  *
4959  * Weekday:
4960  * %A - The full weekday name (``Sunday'')
4961  * %^A uppercased (``SUNDAY'')
4962  * %a - The abbreviated name (``Sun'')
4963  * %^a uppercased (``SUN'')
4964  * %u - Day of the week (Monday is 1, 1..7)
4965  * %w - Day of the week (Sunday is 0, 0..6)
4966  *
4967  * ISO 8601 week-based year and week number:
4968  * The first week of YYYY starts with a Monday and includes YYYY-01-04.
4969  * The days in the year before the first week are in the last week of
4970  * the previous year.
4971  * %G - The week-based year
4972  * %g - The last 2 digits of the week-based year (00..99)
4973  * %V - Week number of the week-based year (01..53)
4974  *
4975  * Week number:
4976  * The first week of YYYY that starts with a Sunday or Monday (according to %U
4977  * or %W). The days in the year before the first week are in week 0.
4978  * %U - Week number of the year. The week starts with Sunday. (00..53)
4979  * %W - Week number of the year. The week starts with Monday. (00..53)
4980  *
4981  * Seconds since the Epoch:
4982  * %s - Number of seconds since 1970-01-01 00:00:00 UTC.
4983  *
4984  * Literal string:
4985  * %n - Newline character (\n)
4986  * %t - Tab character (\t)
4987  * %% - Literal ``%'' character
4988  *
4989  * Combination:
4990  * %c - date and time (%a %b %e %T %Y)
4991  * %D - Date (%m/%d/%y)
4992  * %F - The ISO 8601 date format (%Y-%m-%d)
4993  * %v - VMS date (%e-%^b-%4Y)
4994  * %x - Same as %D
4995  * %X - Same as %T
4996  * %r - 12-hour time (%I:%M:%S %p)
4997  * %R - 24-hour time (%H:%M)
4998  * %T - 24-hour time (%H:%M:%S)
4999  *
5000  * This method is similar to strftime() function defined in ISO C and POSIX.
5001  *
5002  * While all directives are locale independent since Ruby 1.9, %Z is platform
5003  * dependent.
5004  * So, the result may differ even if the same format string is used in other
5005  * systems such as C.
5006  *
5007  * %z is recommended over %Z.
5008  * %Z doesn't identify the timezone.
5009  * For example, "CST" is used at America/Chicago (-06:00),
5010  * America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30)
5011  * and Australia/Adelaide (+10:30).
5012  * Also, %Z is highly dependent on the operating system.
5013  * For example, it may generate a non ASCII string on Japanese Windows,
5014  * i.e. the result can be different to "JST".
5015  * So the numeric time zone offset, %z, is recommended.
5016  *
5017  * Examples:
5018  *
5019  * t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600
5020  * t.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
5021  * t.strftime("at %I:%M %p") #=> "at 08:37 AM"
5022  *
5023  * Various ISO 8601 formats:
5024  * %Y%m%d => 20071119 Calendar date (basic)
5025  * %F => 2007-11-19 Calendar date (extended)
5026  * %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month
5027  * %Y => 2007 Calendar date, reduced accuracy, specific year
5028  * %C => 20 Calendar date, reduced accuracy, specific century
5029  * %Y%j => 2007323 Ordinal date (basic)
5030  * %Y-%j => 2007-323 Ordinal date (extended)
5031  * %GW%V%u => 2007W471 Week date (basic)
5032  * %G-W%V-%u => 2007-W47-1 Week date (extended)
5033  * %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic)
5034  * %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended)
5035  * %H%M%S => 083748 Local time (basic)
5036  * %T => 08:37:48 Local time (extended)
5037  * %H%M => 0837 Local time, reduced accuracy, specific minute (basic)
5038  * %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended)
5039  * %H => 08 Local time, reduced accuracy, specific hour
5040  * %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic)
5041  * %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended)
5042  * %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic)
5043  * %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended)
5044  * %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic)
5045  * %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended)
5046  * %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic)
5047  * %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
5048  * %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic)
5049  * %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended)
5050  * %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic)
5051  * %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
5052  * %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic)
5053  * %FT%R => 2007-11-19T08:37 Calendar date and local time (extended)
5054  * %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic)
5055  * %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended)
5056  * %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic)
5057  * %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
5058  *
5059  */
5060 
5061 static VALUE
5062 time_strftime(VALUE time, VALUE format)
5063 {
5064  struct time_object *tobj;
5065  const char *fmt;
5066  long len;
5067  rb_encoding *enc;
5068  VALUE tmp;
5069 
5070  GetTimeval(time, tobj);
5071  MAKE_TM(time, tobj);
5072  StringValue(format);
5073  if (!rb_enc_str_asciicompat_p(format)) {
5074  rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
5075  }
5076  tmp = rb_str_tmp_frozen_acquire(format);
5077  fmt = RSTRING_PTR(tmp);
5078  len = RSTRING_LEN(tmp);
5079  enc = rb_enc_get(format);
5080  if (len == 0) {
5081  rb_warning("strftime called with empty format string");
5082  return rb_enc_str_new(0, 0, enc);
5083  }
5084  else {
5085  VALUE str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew,
5086  TZMODE_UTC_P(tobj));
5087  rb_str_tmp_frozen_release(format, tmp);
5088  if (!str) rb_raise(rb_eArgError, "invalid format: %"PRIsVALUE, format);
5089  return str;
5090  }
5091 }
5092 
5093 int ruby_marshal_write_long(long x, char *buf);
5094 
5095 enum {base_dump_size = 8};
5096 
5097 /* :nodoc: */
5098 static VALUE
5099 time_mdump(VALUE time)
5100 {
5101  struct time_object *tobj;
5102  unsigned long p, s;
5103  char buf[base_dump_size + sizeof(long) + 1];
5104  int i;
5105  VALUE str;
5106 
5107  struct vtm vtm;
5108  long year;
5109  long usec, nsec;
5110  VALUE subsecx, nano, subnano, v, zone;
5111 
5112  VALUE year_extend = Qnil;
5113  const int max_year = 1900+0xffff;
5114 
5115  GetTimeval(time, tobj);
5116 
5117  gmtimew(tobj->timew, &vtm);
5118 
5119  if (FIXNUM_P(vtm.year)) {
5120  year = FIX2LONG(vtm.year);
5121  if (year > max_year) {
5122  year_extend = INT2FIX(year - max_year);
5123  year = max_year;
5124  }
5125  else if (year < 1900) {
5126  year_extend = LONG2NUM(1900 - year);
5127  year = 1900;
5128  }
5129  }
5130  else {
5131  if (rb_int_positive_p(vtm.year)) {
5132  year_extend = rb_int_minus(vtm.year, INT2FIX(max_year));
5133  year = max_year;
5134  }
5135  else {
5136  year_extend = rb_int_minus(INT2FIX(1900), vtm.year);
5137  year = 1900;
5138  }
5139  }
5140 
5141  subsecx = vtm.subsecx;
5142 
5143  nano = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
5144  divmodv(nano, INT2FIX(1), &v, &subnano);
5145  nsec = FIX2LONG(v);
5146  usec = nsec / 1000;
5147  nsec = nsec % 1000;
5148 
5149  nano = addv(LONG2FIX(nsec), subnano);
5150 
5151  p = 0x1UL << 31 | /* 1 */
5152  TZMODE_UTC_P(tobj) << 30 | /* 1 */
5153  (year-1900) << 14 | /* 16 */
5154  (vtm.mon-1) << 10 | /* 4 */
5155  vtm.mday << 5 | /* 5 */
5156  vtm.hour; /* 5 */
5157  s = (unsigned long)vtm.min << 26 | /* 6 */
5158  vtm.sec << 20 | /* 6 */
5159  usec; /* 20 */
5160 
5161  for (i=0; i<4; i++) {
5162  buf[i] = (unsigned char)p;
5163  p = RSHIFT(p, 8);
5164  }
5165  for (i=4; i<8; i++) {
5166  buf[i] = (unsigned char)s;
5167  s = RSHIFT(s, 8);
5168  }
5169 
5170  if (!NIL_P(year_extend)) {
5171  /*
5172  * Append extended year distance from 1900..(1900+0xffff). In
5173  * each cases, there is no sign as the value is positive. The
5174  * format is length (marshaled long) + little endian packed
5175  * binary (like as Fixnum and Bignum).
5176  */
5177  size_t ysize = rb_absint_size(year_extend, NULL);
5178  char *p, *const buf_year_extend = buf + base_dump_size;
5179  if (ysize > LONG_MAX ||
5180  (i = ruby_marshal_write_long((long)ysize, buf_year_extend)) < 0) {
5181  rb_raise(rb_eArgError, "year too %s to marshal: %"PRIsVALUE" UTC",
5182  (year == 1900 ? "small" : "big"), vtm.year);
5183  }
5184  i += base_dump_size;
5185  str = rb_str_new(NULL, i + ysize);
5186  p = RSTRING_PTR(str);
5187  memcpy(p, buf, i);
5188  p += i;
5189  rb_integer_pack(year_extend, p, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
5190  }
5191  else {
5193  }
5195  if (!rb_equal(nano, INT2FIX(0))) {
5196  if (RB_TYPE_P(nano, T_RATIONAL)) {
5197  rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
5198  rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
5199  }
5200  else {
5201  rb_ivar_set(str, id_nano_num, nano);
5202  rb_ivar_set(str, id_nano_den, INT2FIX(1));
5203  }
5204  }
5205  if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
5206  /*
5207  * submicro is formatted in fixed-point packed BCD (without sign).
5208  * It represent digits under microsecond.
5209  * For nanosecond resolution, 3 digits (2 bytes) are used.
5210  * However it can be longer.
5211  * Extra digits are ignored for loading.
5212  */
5213  char buf[2];
5214  int len = (int)sizeof(buf);
5215  buf[1] = (char)((nsec % 10) << 4);
5216  nsec /= 10;
5217  buf[0] = (char)(nsec % 10);
5218  nsec /= 10;
5219  buf[0] |= (char)((nsec % 10) << 4);
5220  if (buf[1] == 0)
5221  len = 1;
5222  rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
5223  }
5224  if (!TZMODE_UTC_P(tobj)) {
5225  VALUE off = rb_time_utc_offset(time), div, mod;
5226  divmodv(off, INT2FIX(1), &div, &mod);
5227  if (rb_equal(mod, INT2FIX(0)))
5228  off = rb_Integer(div);
5229  rb_ivar_set(str, id_offset, off);
5230  }
5231  zone = tobj->vtm.zone;
5232  if (maybe_tzobj_p(zone)) {
5233  zone = rb_funcallv(zone, id_name, 0, 0);
5234  }
5235  rb_ivar_set(str, id_zone, zone);
5236  return str;
5237 }
5238 
5239 /* :nodoc: */
5240 static VALUE
5241 time_dump(int argc, VALUE *argv, VALUE time)
5242 {
5243  VALUE str;
5244 
5245  rb_check_arity(argc, 0, 1);
5246  str = time_mdump(time);
5247 
5248  return str;
5249 }
5250 
5251 static VALUE
5252 mload_findzone(VALUE arg)
5253 {
5254  VALUE *argp = (VALUE *)arg;
5255  VALUE time = argp[0], zone = argp[1];
5256  return find_timezone(time, zone);
5257 }
5258 
5259 static VALUE
5260 mload_zone(VALUE time, VALUE zone)
5261 {
5262  VALUE z, args[2];
5263  args[0] = time;
5264  args[1] = zone;
5265  z = rb_rescue(mload_findzone, (VALUE)args, 0, Qnil);
5266  if (NIL_P(z)) return rb_fstring(zone);
5267  if (RB_TYPE_P(z, T_STRING)) return rb_fstring(z);
5268  return z;
5269 }
5270 
5271 long ruby_marshal_read_long(const char **buf, long len);
5272 
5273 /* :nodoc: */
5274 static VALUE
5275 time_mload(VALUE time, VALUE str)
5276 {
5277  struct time_object *tobj;
5278  unsigned long p, s;
5279  time_t sec;
5280  long usec;
5281  unsigned char *buf;
5282  struct vtm vtm;
5283  int i, gmt;
5284  long nsec;
5285  VALUE submicro, nano_num, nano_den, offset, zone, year;
5286  wideval_t timew;
5287 
5288  time_modify(time);
5289 
5290 #define get_attr(attr, iffound) \
5291  attr = rb_attr_delete(str, id_##attr); \
5292  if (!NIL_P(attr)) { \
5293  iffound; \
5294  }
5295 
5296  get_attr(nano_num, {});
5297  get_attr(nano_den, {});
5298  get_attr(submicro, {});
5299  get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, NULL, Qnil)));
5300  get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, NULL, Qnil)));
5301  get_attr(year, {});
5302 
5303 #undef get_attr
5304 
5306 
5307  StringValue(str);
5308  buf = (unsigned char *)RSTRING_PTR(str);
5309  if (RSTRING_LEN(str) < base_dump_size) {
5310  invalid_format:
5311  rb_raise(rb_eTypeError, "marshaled time format differ");
5312  }
5313 
5314  p = s = 0;
5315  for (i=0; i<4; i++) {
5316  p |= (unsigned long)buf[i]<<(8*i);
5317  }
5318  for (i=4; i<8; i++) {
5319  s |= (unsigned long)buf[i]<<(8*(i-4));
5320  }
5321 
5322  if ((p & (1UL<<31)) == 0) {
5323  gmt = 0;
5324  offset = Qnil;
5325  sec = p;
5326  usec = s;
5327  nsec = usec * 1000;
5328  timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
5329  }
5330  else {
5331  p &= ~(1UL<<31);
5332  gmt = (int)((p >> 30) & 0x1);
5333 
5334  if (NIL_P(year)) {
5335  year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
5336  }
5337  if (RSTRING_LEN(str) > base_dump_size) {
5338  long len = RSTRING_LEN(str) - base_dump_size;
5339  long ysize = 0;
5340  VALUE year_extend;
5341  const char *ybuf = (const char *)(buf += base_dump_size);
5342  ysize = ruby_marshal_read_long(&ybuf, len);
5343  len -= ybuf - (const char *)buf;
5344  if (ysize < 0 || ysize > len) goto invalid_format;
5345  year_extend = rb_integer_unpack(ybuf, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
5346  if (year == INT2FIX(1900)) {
5347  year = rb_int_minus(year, year_extend);
5348  }
5349  else {
5350  year = rb_int_plus(year, year_extend);
5351  }
5352  }
5353  vtm.year = year;
5354  vtm.mon = ((int)(p >> 10) & 0xf) + 1;
5355  vtm.mday = (int)(p >> 5) & 0x1f;
5356  vtm.hour = (int) p & 0x1f;
5357  vtm.min = (int)(s >> 26) & 0x3f;
5358  vtm.sec = (int)(s >> 20) & 0x3f;
5359  vtm.utc_offset = INT2FIX(0);
5360  vtm.yday = vtm.wday = 0;
5361  vtm.isdst = 0;
5362  vtm.zone = rb_fstring_lit("");
5363 
5364  usec = (long)(s & 0xfffff);
5365  nsec = usec * 1000;
5366 
5367 
5368  vtm.subsecx = mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
5369  if (nano_num != Qnil) {
5370  VALUE nano = quov(num_exact(nano_num), num_exact(nano_den));
5371  vtm.subsecx = addv(vtm.subsecx, mulquov(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5372  }
5373  else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
5374  unsigned char *ptr;
5375  long len;
5376  int digit;
5377  ptr = (unsigned char*)StringValuePtr(submicro);
5378  len = RSTRING_LEN(submicro);
5379  nsec = 0;
5380  if (0 < len) {
5381  if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
5382  nsec += digit * 100;
5383  if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
5384  nsec += digit * 10;
5385  }
5386  if (1 < len) {
5387  if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
5388  nsec += digit;
5389  }
5390  vtm.subsecx = addv(vtm.subsecx, mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5391 end_submicro: ;
5392  }
5393  timew = timegmw(&vtm);
5394  }
5395 
5396  GetNewTimeval(time, tobj);
5397  tobj->tzmode = TIME_TZMODE_LOCALTIME;
5398  tobj->tm_got = 0;
5399  tobj->timew = timew;
5400  if (gmt) {
5401  TZMODE_SET_UTC(tobj);
5402  }
5403  else if (!NIL_P(offset)) {
5404  time_set_utc_offset(time, offset);
5405  time_fixoff(time);
5406  }
5407  if (!NIL_P(zone)) {
5408  zone = mload_zone(time, zone);
5409  tobj->vtm.zone = zone;
5410  zone_localtime(zone, time);
5411  }
5412 
5413  return time;
5414 }
5415 
5416 /* :nodoc: */
5417 static VALUE
5418 time_load(VALUE klass, VALUE str)
5419 {
5420  VALUE time = time_s_alloc(klass);
5421 
5422  time_mload(time, str);
5423  return time;
5424 }
5425 
5426 /* :nodoc:*/
5427 /* Document-class: Time::tm
5428  *
5429  * A container class for timezone conversion.
5430  */
5431 
5432 /*
5433  * call-seq:
5434  *
5435  * Time::tm.from_time(t) -> tm
5436  *
5437  * Creates new Time::tm object from a Time object.
5438  */
5439 
5440 static VALUE
5441 tm_from_time(VALUE klass, VALUE time)
5442 {
5443  struct time_object *tobj;
5444  struct vtm vtm, *v;
5445 #if TM_IS_TIME
5446  VALUE tm;
5447  struct time_object *ttm;
5448 
5449  GetTimeval(time, tobj);
5450  tm = time_s_alloc(klass);
5451  ttm = DATA_PTR(tm);
5452  v = &vtm;
5453  GMTIMEW(ttm->timew = tobj->timew, v);
5454  v->subsecx = INT2FIX(0);
5455  v->zone = Qnil;
5456  ttm->vtm = *v;
5457  ttm->tm_got = 1;
5458  TZMODE_SET_UTC(ttm);
5459  return tm;
5460 #else
5461  VALUE args[8];
5462  int i = 0;
5463 
5464  GetTimeval(time, tobj);
5465  if (tobj->tm_got && TZMODE_UTC_P(tobj))
5466  v = &tobj->vtm;
5467  else
5468  GMTIMEW(tobj->timew, v = &vtm);
5469  args[i++] = v->year;
5470  args[i++] = INT2FIX(v->mon);
5471  args[i++] = INT2FIX(v->mday);
5472  args[i++] = INT2FIX(v->hour);
5473  args[i++] = INT2FIX(v->min);
5474  args[i++] = INT2FIX(v->sec);
5475  switch (v->isdst) {
5476  case 0: args[i++] = Qfalse; break;
5477  case 1: args[i++] = Qtrue; break;
5478  default: args[i++] = Qnil; break;
5479  }
5480  args[i++] = w2v(rb_time_unmagnify(tobj->timew));
5481  return rb_class_new_instance(i, args, klass);
5482 #endif
5483 }
5484 
5485 /*
5486  * call-seq:
5487  *
5488  * Time::tm.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, tz=nil) -> tm
5489  *
5490  * Creates new Time::tm object.
5491  */
5492 
5493 static VALUE
5494 tm_initialize(int argc, VALUE *argv, VALUE tm)
5495 {
5496  struct vtm vtm;
5497  wideval_t t;
5498 
5499  if (rb_check_arity(argc, 1, 7) > 6) argc = 6;
5500  time_arg(argc, argv, &vtm);
5501  t = timegmw(&vtm);
5502  {
5503 #if TM_IS_TIME
5504  struct time_object *tobj = DATA_PTR(tm);
5505  tobj->tzmode = TIME_TZMODE_UTC;
5506  tobj->timew = t;
5507  tobj->vtm = vtm;
5508 #else
5509  int i = 0;
5510  RSTRUCT_SET(tm, i++, INT2FIX(vtm.sec));
5511  RSTRUCT_SET(tm, i++, INT2FIX(vtm.min));
5512  RSTRUCT_SET(tm, i++, INT2FIX(vtm.hour));
5513  RSTRUCT_SET(tm, i++, INT2FIX(vtm.mday));
5514  RSTRUCT_SET(tm, i++, INT2FIX(vtm.mon));
5515  RSTRUCT_SET(tm, i++, vtm.year);
5516  RSTRUCT_SET(tm, i++, w2v(rb_time_unmagnify(t)));
5517 #endif
5518  }
5519  return tm;
5520 }
5521 
5522 /* call-seq:
5523  *
5524  * tm.to_time -> time
5525  *
5526  * Returns a new Time object.
5527  */
5528 
5529 static VALUE
5530 tm_to_time(VALUE tm)
5531 {
5532 #if TM_IS_TIME
5533  struct time_object *torig = get_timeval(tm);
5534  VALUE dup = time_s_alloc(rb_cTime);
5535  struct time_object *tobj = DATA_PTR(dup);
5536  *tobj = *torig;
5537  return dup;
5538 #else
5539  VALUE t[6];
5540  const VALUE *p = RSTRUCT_CONST_PTR(tm);
5541  int i;
5542 
5543  for (i = 0; i < numberof(t); ++i) {
5544  t[i] = p[numberof(t) - 1 - i];
5545  }
5546  return time_s_mkutc(numberof(t), t, rb_cTime);
5547 #endif
5548 }
5549 
5550 #if !TM_IS_TIME
5551 static VALUE
5552 tm_zero(VALUE tm)
5553 {
5554  return INT2FIX(0);
5555 }
5556 
5557 #define tm_subsec tm_zero
5558 #define tm_utc_offset tm_zero
5559 
5560 static VALUE
5561 tm_isdst(VALUE tm)
5562 {
5563  return Qfalse;
5564 }
5565 
5566 static VALUE
5567 tm_to_s(VALUE tm)
5568 {
5569  const VALUE *p = RSTRUCT_CONST_PTR(tm);
5570 
5571  return rb_sprintf("%.4"PRIsVALUE"-%.2"PRIsVALUE"-%.2"PRIsVALUE" "
5572  "%.2"PRIsVALUE":%.2"PRIsVALUE":%.2"PRIsVALUE" "
5573  "UTC",
5574  p[5], p[4], p[3], p[2], p[1], p[0]);
5575 }
5576 #else
5577 static VALUE
5578 tm_plus(VALUE tm, VALUE offset)
5579 {
5580  return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, +1);
5581 }
5582 
5583 static VALUE
5584 tm_minus(VALUE tm, VALUE offset)
5585 {
5586  return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, -1);
5587 }
5588 #endif
5589 
5590 static VALUE
5591 Init_tm(VALUE outer, const char *name)
5592 {
5593  /* :stopdoc:*/
5594  VALUE tm;
5595 #if TM_IS_TIME
5597  rb_define_alloc_func(tm, time_s_alloc);
5598  rb_define_method(tm, "sec", time_sec, 0);
5599  rb_define_method(tm, "min", time_min, 0);
5600  rb_define_method(tm, "hour", time_hour, 0);
5601  rb_define_method(tm, "mday", time_mday, 0);
5602  rb_define_method(tm, "day", time_mday, 0);
5603  rb_define_method(tm, "mon", time_mon, 0);
5604  rb_define_method(tm, "month", time_mon, 0);
5605  rb_define_method(tm, "year", time_year, 0);
5606  rb_define_method(tm, "isdst", time_isdst, 0);
5607  rb_define_method(tm, "dst?", time_isdst, 0);
5608  rb_define_method(tm, "zone", time_zone, 0);
5609  rb_define_method(tm, "gmtoff", rb_time_utc_offset, 0);
5610  rb_define_method(tm, "gmt_offset", rb_time_utc_offset, 0);
5611  rb_define_method(tm, "utc_offset", rb_time_utc_offset, 0);
5612  rb_define_method(tm, "utc?", time_utc_p, 0);
5613  rb_define_method(tm, "gmt?", time_utc_p, 0);
5614  rb_define_method(tm, "to_s", time_to_s, 0);
5615  rb_define_method(tm, "inspect", time_inspect, 0);
5616  rb_define_method(tm, "to_a", time_to_a, 0);
5617  rb_define_method(tm, "tv_sec", time_to_i, 0);
5618  rb_define_method(tm, "tv_usec", time_usec, 0);
5619  rb_define_method(tm, "usec", time_usec, 0);
5620  rb_define_method(tm, "tv_nsec", time_nsec, 0);
5621  rb_define_method(tm, "nsec", time_nsec, 0);
5622  rb_define_method(tm, "subsec", time_subsec, 0);
5623  rb_define_method(tm, "to_i", time_to_i, 0);
5624  rb_define_method(tm, "to_f", time_to_f, 0);
5625  rb_define_method(tm, "to_r", time_to_r, 0);
5626  rb_define_method(tm, "+", tm_plus, 1);
5627  rb_define_method(tm, "-", tm_minus, 1);
5628 #else
5629  tm = rb_struct_define_under(outer, "tm",
5630  "sec", "min", "hour",
5631  "mday", "mon", "year",
5632  "to_i", NULL);
5633  rb_define_method(tm, "subsec", tm_subsec, 0);
5634  rb_define_method(tm, "utc_offset", tm_utc_offset, 0);
5635  rb_define_method(tm, "to_s", tm_to_s, 0);
5636  rb_define_method(tm, "inspect", tm_to_s, 0);
5637  rb_define_method(tm, "isdst", tm_isdst, 0);
5638  rb_define_method(tm, "dst?", tm_isdst, 0);
5639 #endif
5640  rb_define_method(tm, "initialize", tm_initialize, -1);
5641  rb_define_method(tm, "utc", tm_to_time, 0);
5642  rb_alias(tm, rb_intern("to_time"), rb_intern("utc"));
5643  rb_define_singleton_method(tm, "from_time", tm_from_time, 1);
5644  /* :startdoc:*/
5645 
5646  return tm;
5647 }
5648 
5649 VALUE
5651 {
5652  VALUE tm, abbr, strftime_args[2];
5653 
5654  abbr = rb_check_string_type(zone);
5655  if (!NIL_P(abbr)) return abbr;
5656 
5657  tm = tm_from_time(rb_cTimeTM, time);
5658  abbr = rb_check_funcall(zone, rb_intern("abbr"), 1, &tm);
5659  if (abbr != Qundef) {
5660  goto found;
5661  }
5662 #ifdef SUPPORT_TZINFO_ZONE_ABBREVIATION
5663  abbr = rb_check_funcall(zone, rb_intern("period_for_utc"), 1, &tm);
5664  if (abbr != Qundef) {
5665  abbr = rb_funcallv(abbr, rb_intern("abbreviation"), 0, 0);
5666  goto found;
5667  }
5668 #endif
5669  strftime_args[0] = rb_fstring_lit("%Z");
5670  strftime_args[1] = tm;
5671  abbr = rb_check_funcall(zone, rb_intern("strftime"), 2, strftime_args);
5672  if (abbr != Qundef) {
5673  goto found;
5674  }
5675  abbr = rb_check_funcall_default(zone, idName, 0, 0, Qnil);
5676  found:
5677  return rb_obj_as_string(abbr);
5678 }
5679 
5680 /*
5681  * Time is an abstraction of dates and times. Time is stored internally as
5682  * the number of seconds with fraction since the _Epoch_, January 1, 1970
5683  * 00:00 UTC. Also see the library module Date. The Time class treats GMT
5684  * (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent.
5685  * GMT is the older way of referring to these baseline times but persists in
5686  * the names of calls on POSIX systems.
5687  *
5688  * All times may have fraction. Be aware of this fact when comparing times
5689  * with each other -- times that are apparently equal when displayed may be
5690  * different when compared.
5691  *
5692  * Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer,
5693  * Bignum or Rational.
5694  * The integer is a number of nanoseconds since the _Epoch_ which can
5695  * represent 1823-11-12 to 2116-02-20.
5696  * When Bignum or Rational is used (before 1823, after 2116, under
5697  * nanosecond), Time works slower as when integer is used.
5698  *
5699  * = Examples
5700  *
5701  * All of these examples were done using the EST timezone which is GMT-5.
5702  *
5703  * == Creating a new Time instance
5704  *
5705  * You can create a new instance of Time with Time::new. This will use the
5706  * current system time. Time::now is an alias for this. You can also
5707  * pass parts of the time to Time::new such as year, month, minute, etc. When
5708  * you want to construct a time this way you must pass at least a year. If you
5709  * pass the year with nothing else time will default to January 1 of that year
5710  * at 00:00:00 with the current system timezone. Here are some examples:
5711  *
5712  * Time.new(2002) #=> 2002-01-01 00:00:00 -0500
5713  * Time.new(2002, 10) #=> 2002-10-01 00:00:00 -0500
5714  * Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
5715  *
5716  * You can pass a UTC offset:
5717  *
5718  * Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200
5719  *
5720  * Or a timezone object:
5721  *
5722  * tz = timezone("Europe/Athens") # Eastern European Time, UTC+2
5723  * Time.new(2002, 10, 31, 2, 2, 2, tz) #=> 2002-10-31 02:02:02 +0200
5724  *
5725  * You can also use Time::gm, Time::local and Time::utc to infer GMT,
5726  * local and UTC timezones instead of using the current system
5727  * setting.
5728  *
5729  * You can also create a new time using Time::at which takes the number of
5730  * seconds (or fraction of seconds) since the {Unix
5731  * Epoch}[http://en.wikipedia.org/wiki/Unix_time].
5732  *
5733  * Time.at(628232400) #=> 1989-11-28 00:00:00 -0500
5734  *
5735  * == Working with an instance of Time
5736  *
5737  * Once you have an instance of Time there is a multitude of things you can
5738  * do with it. Below are some examples. For all of the following examples, we
5739  * will work on the assumption that you have done the following:
5740  *
5741  * t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")
5742  *
5743  * Was that a monday?
5744  *
5745  * t.monday? #=> false
5746  *
5747  * What year was that again?
5748  *
5749  * t.year #=> 1993
5750  *
5751  * Was it daylight savings at the time?
5752  *
5753  * t.dst? #=> false
5754  *
5755  * What's the day a year later?
5756  *
5757  * t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900
5758  *
5759  * How many seconds was that since the Unix Epoch?
5760  *
5761  * t.to_i #=> 730522800
5762  *
5763  * You can also do standard functions like compare two times.
5764  *
5765  * t1 = Time.new(2010)
5766  * t2 = Time.new(2011)
5767  *
5768  * t1 == t2 #=> false
5769  * t1 == t1 #=> true
5770  * t1 < t2 #=> true
5771  * t1 > t2 #=> false
5772  *
5773  * Time.new(2010,10,31).between?(t1, t2) #=> true
5774  *
5775  * == Timezone argument
5776  *
5777  * A timezone argument must have +local_to_utc+ and +utc_to_local+
5778  * methods, and may have +name+, +abbr+, and +dst?+ methods.
5779  *
5780  * The +local_to_utc+ method should convert a Time-like object from
5781  * the timezone to UTC, and +utc_to_local+ is the opposite. The
5782  * result also should be a Time or Time-like object (not necessary to
5783  * be the same class). The #zone of the result is just ignored.
5784  * Time-like argument to these methods is similar to a Time object in
5785  * UTC without sub-second; it has attribute readers for the parts,
5786  * e.g. #year, #month, and so on, and epoch time readers, #to_i. The
5787  * sub-second attributes are fixed as 0, and #utc_offset, #zone,
5788  * #isdst, and their aliases are same as a Time object in UTC.
5789  * Also #to_time, #+, and #- methods are defined.
5790  *
5791  * The +name+ method is used for marshaling. If this method is not
5792  * defined on a timezone object, Time objects using that timezone
5793  * object can not be dumped by Marshal.
5794  *
5795  * The +abbr+ method is used by '%Z' in #strftime.
5796  *
5797  * The +dst?+ method is called with a +Time+ value and should return whether
5798  * the +Time+ value is in daylight savings time in the zone.
5799  *
5800  * === Auto conversion to Timezone
5801  *
5802  * At loading marshaled data, a timezone name will be converted to a timezone
5803  * object by +find_timezone+ class method, if the method is defined.
5804  *
5805  * Similarly, that class method will be called when a timezone argument does
5806  * not have the necessary methods mentioned above.
5807  */
5808 
5809 void
5811 {
5812 #undef rb_intern
5813 #define rb_intern(str) rb_intern_const(str)
5814 
5815  id_submicro = rb_intern("submicro");
5816  id_nano_num = rb_intern("nano_num");
5817  id_nano_den = rb_intern("nano_den");
5818  id_offset = rb_intern("offset");
5819  id_zone = rb_intern("zone");
5820  id_nanosecond = rb_intern("nanosecond");
5821  id_microsecond = rb_intern("microsecond");
5822  id_millisecond = rb_intern("millisecond");
5823  id_nsec = rb_intern("nsec");
5824  id_usec = rb_intern("usec");
5825  id_local_to_utc = rb_intern("local_to_utc");
5826  id_utc_to_local = rb_intern("utc_to_local");
5827  id_year = rb_intern("year");
5828  id_mon = rb_intern("mon");
5829  id_mday = rb_intern("mday");
5830  id_hour = rb_intern("hour");
5831  id_min = rb_intern("min");
5832  id_sec = rb_intern("sec");
5833  id_isdst = rb_intern("isdst");
5834  id_find_timezone = rb_intern("find_timezone");
5835 
5836  rb_cTime = rb_define_class("Time", rb_cObject);
5838 
5839  rb_define_alloc_func(rb_cTime, time_s_alloc);
5840  rb_define_singleton_method(rb_cTime, "now", time_s_now, -1);
5841  rb_define_singleton_method(rb_cTime, "at", time_s_at, -1);
5842  rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
5843  rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1);
5844  rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
5845  rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1);
5846 
5847  rb_define_method(rb_cTime, "to_i", time_to_i, 0);
5848  rb_define_method(rb_cTime, "to_f", time_to_f, 0);
5849  rb_define_method(rb_cTime, "to_r", time_to_r, 0);
5850  rb_define_method(rb_cTime, "<=>", time_cmp, 1);
5851  rb_define_method(rb_cTime, "eql?", time_eql, 1);
5852  rb_define_method(rb_cTime, "hash", time_hash, 0);
5853  rb_define_method(rb_cTime, "initialize", time_init, -1);
5854  rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
5855 
5856  rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
5857  rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
5858  rb_define_method(rb_cTime, "utc", time_gmtime, 0);
5859  rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
5860  rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
5861  rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
5862 
5863  rb_define_method(rb_cTime, "ctime", time_asctime, 0);
5864  rb_define_method(rb_cTime, "asctime", time_asctime, 0);
5865  rb_define_method(rb_cTime, "to_s", time_to_s, 0);
5866  rb_define_method(rb_cTime, "inspect", time_inspect, 0);
5867  rb_define_method(rb_cTime, "to_a", time_to_a, 0);
5868 
5869  rb_define_method(rb_cTime, "+", time_plus, 1);
5870  rb_define_method(rb_cTime, "-", time_minus, 1);
5871 
5872  rb_define_method(rb_cTime, "succ", time_succ, 0);
5873  rb_define_method(rb_cTime, "round", time_round, -1);
5874  rb_define_method(rb_cTime, "floor", time_floor, -1);
5875  rb_define_method(rb_cTime, "ceil", time_ceil, -1);
5876 
5877  rb_define_method(rb_cTime, "sec", time_sec, 0);
5878  rb_define_method(rb_cTime, "min", time_min, 0);
5879  rb_define_method(rb_cTime, "hour", time_hour, 0);
5880  rb_define_method(rb_cTime, "mday", time_mday, 0);
5881  rb_define_method(rb_cTime, "day", time_mday, 0);
5882  rb_define_method(rb_cTime, "mon", time_mon, 0);
5883  rb_define_method(rb_cTime, "month", time_mon, 0);
5884  rb_define_method(rb_cTime, "year", time_year, 0);
5885  rb_define_method(rb_cTime, "wday", time_wday, 0);
5886  rb_define_method(rb_cTime, "yday", time_yday, 0);
5887  rb_define_method(rb_cTime, "isdst", time_isdst, 0);
5888  rb_define_method(rb_cTime, "dst?", time_isdst, 0);
5889  rb_define_method(rb_cTime, "zone", time_zone, 0);
5891  rb_define_method(rb_cTime, "gmt_offset", rb_time_utc_offset, 0);
5892  rb_define_method(rb_cTime, "utc_offset", rb_time_utc_offset, 0);
5893 
5894  rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
5895  rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
5896 
5897  rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
5898  rb_define_method(rb_cTime, "monday?", time_monday, 0);
5899  rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
5900  rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
5901  rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
5902  rb_define_method(rb_cTime, "friday?", time_friday, 0);
5903  rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
5904 
5905  rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
5906  rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
5907  rb_define_method(rb_cTime, "usec", time_usec, 0);
5908  rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
5909  rb_define_method(rb_cTime, "nsec", time_nsec, 0);
5910  rb_define_method(rb_cTime, "subsec", time_subsec, 0);
5911 
5912  rb_define_method(rb_cTime, "strftime", time_strftime, 1);
5913 
5914  /* methods for marshaling */
5915  rb_define_private_method(rb_cTime, "_dump", time_dump, -1);
5916  rb_define_private_method(rb_singleton_class(rb_cTime), "_load", time_load, 1);
5917 #if 0
5918  /* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
5919  rb_define_private_method(rb_cTime, "marshal_dump", time_mdump, 0);
5920  rb_define_private_method(rb_cTime, "marshal_load", time_mload, 1);
5921 #endif
5922 
5923 #ifdef DEBUG_FIND_TIME_NUMGUESS
5924  rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL);
5925 #endif
5926 
5927  rb_cTimeTM = Init_tm(rb_cTime, "tm");
5928 }
idTo_int
@ idTo_int
Definition: rb_mjit_min_header-2.7.0.h:8713
rb_get_kwargs
int rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
Definition: class.c:1886
ISASCII
#define ISASCII(c)
Definition: ruby.h:2304
ID
unsigned long ID
Definition: ruby.h:103
rb_check_funcall
VALUE rb_check_funcall(VALUE, ID, int, const VALUE *)
Definition: vm_eval.c:505
TMOPT_MAX_
@ TMOPT_MAX_
Definition: time.c:2713
rb_str_concat
VALUE rb_str_concat(VALUE, VALUE)
Definition: string.c:3065
rb_define_class
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition: class.c:649
FIXWV_MAX
#define FIXWV_MAX
Definition: time.c:227
TIMET2NUM
#define TIMET2NUM(v)
Definition: rb_mjit_min_header-2.7.0.h:119
M28
#define M28(m)
Definition: time.c:776
rb_fstring
VALUE rb_fstring(VALUE)
Definition: string.c:312
TypedData_Make_Struct
#define TypedData_Make_Struct(klass, type, data_type, sval)
Definition: ruby.h:1244
idEq
@ idEq
Definition: id.h:96
tzset
void tzset(void)
TRUE
#define TRUE
Definition: nkf.h:175
rb_big_modulo
VALUE rb_big_modulo(VALUE x, VALUE y)
Definition: bignum.c:6103
rb_struct_define_under
VALUE rb_struct_define_under(VALUE, const char *,...)
Definition: struct.c:449
rb_time_timespec
struct timespec rb_time_timespec(VALUE time)
Definition: time.c:2692
rb_time_nano_new
VALUE rb_time_nano_new(time_t sec, long nsec)
Definition: time.c:2519
time_t
long time_t
Definition: rb_mjit_min_header-2.7.0.h:1236
rb_include_module
void rb_include_module(VALUE klass, VALUE module)
Definition: class.c:869
LONG_MAX
#define LONG_MAX
Definition: ruby.h:220
rb_exc_new_str
VALUE rb_exc_new_str(VALUE etype, VALUE str)
Definition: error.c:972
FIX2INT
#define FIX2INT(x)
Definition: ruby.h:717
rb_gc_register_mark_object
void rb_gc_register_mark_object(VALUE obj)
Definition: gc.c:7063
GMTIME
#define GMTIME(tm, result)
Definition: time.c:735
tm::tm_min
int tm_min
Definition: rb_mjit_min_header-2.7.0.h:1935
rb_warn
void rb_warn(const char *fmt,...)
Definition: error.c:313
GetNewTimeval
#define GetNewTimeval(obj, tobj)
Definition: time.c:1732
ISDIGIT
#define ISDIGIT(c)
Definition: ruby.h:2312
rb_warning
void rb_warning(const char *fmt,...)
Definition: error.c:334
TZMODE_SET_UTC
#define TZMODE_SET_UTC(tobj)
Definition: time.c:1738
rb_scan_args
#define rb_scan_args(argc, argvp, fmt,...)
Definition: rb_mjit_min_header-2.7.0.h:6372
wlt
#define wlt(x, y)
Definition: time.c:356
INT2FIX
#define INT2FIX(i)
Definition: ruby.h:263
localtime
struct tm * localtime(const time_t *_timer)
RSTRING_PTR
#define RSTRING_PTR(str)
Definition: ruby.h:1009
time
time_t time(time_t *_timer)
div
void div_t div(int __numer, int __denom)
NUM2LONG
#define NUM2LONG(x)
Definition: ruby.h:679
TZMODE_UTC_P
#define TZMODE_UTC_P(tobj)
Definition: time.c:1737
MOD
#define MOD(n, d)
Definition: time.c:55
GMTIMEW
#define GMTIMEW(w, v)
Definition: time.c:1292
ne
#define ne(x, y)
Definition: time.c:82
rb_equal
VALUE rb_equal(VALUE, VALUE)
Same as Object#===, case equality.
Definition: object.c:124
rb_locale_encoding
rb_encoding * rb_locale_encoding(void)
Definition: encoding.c:1372
rb_int_positive_pow
RUBY_EXTERN VALUE rb_int_positive_pow(long x, unsigned long y)
Definition: numeric.c:4033
rb_enc_sprintf
VALUE rb_enc_sprintf(rb_encoding *enc, const char *format,...)
Definition: sprintf.c:1178
tm::tm_wday
int tm_wday
Definition: rb_mjit_min_header-2.7.0.h:1940
VALUE
unsigned long VALUE
Definition: ruby.h:102
rb_obj_as_string
VALUE rb_obj_as_string(VALUE)
Definition: string.c:1440
rb_eArgError
VALUE rb_eArgError
Definition: error.c:923
LOCALTIME
#define LOCALTIME(tm, result)
Definition: time.c:716
MAKE_TM
#define MAKE_TM(time, tobj)
Definition: time.c:1754
encoding.h
WINT2FIXWV
#define WINT2FIXWV(i)
Definition: time.c:230
RB_TYPE_P
#define RB_TYPE_P(obj, type)
Definition: ruby.h:560
TZMODE_COPY
#define TZMODE_COPY(tobj1, tobj2)
Definition: time.c:1748
WV2TIMET
#define WV2TIMET(t)
Definition: time.c:643
rb_cTime
VALUE rb_cTime
Definition: time.c:645
rb_enc_get
rb_encoding * rb_enc_get(VALUE obj)
Definition: encoding.c:872
TZMODE_LOCALTIME_P
#define TZMODE_LOCALTIME_P(tobj)
Definition: time.c:1740
int
__inline__ int
Definition: rb_mjit_min_header-2.7.0.h:2839
rb_invcmp
VALUE rb_invcmp(VALUE x, VALUE y)
Definition: compar.c:47
CLOCK_REALTIME
#define CLOCK_REALTIME
Definition: win32.h:133
zone
Definition: zonetab.h:35
id.h
TIME_TZMODE_UTC
#define TIME_TZMODE_UTC
Definition: time.c:1720
SIGNED_VALUE
#define SIGNED_VALUE
Definition: ruby.h:104
uwideint_t
unsigned long uwideint_t
Definition: time.c:218
INT_MIN
#define INT_MIN
Definition: rb_mjit_min_header-2.7.0.h:4050
INTEGER_PACK_LITTLE_ENDIAN
#define INTEGER_PACK_LITTLE_ENDIAN
Definition: intern.h:162
ruby_reset_leap_second_info
void ruby_reset_leap_second_info(void)
Definition: time.c:1193
uint64_t
unsigned long long uint64_t
Definition: sha2.h:102
StringValue
use StringValue() instead")))
TIME_TZMODE_LOCALTIME
#define TIME_TZMODE_LOCALTIME
Definition: time.c:1719
rb_str_dup
VALUE rb_str_dup(VALUE)
Definition: string.c:1516
RRATIONAL
#define RRATIONAL(obj)
Definition: internal.h:794
rb_check_string_type
VALUE rb_check_string_type(VALUE)
Definition: string.c:2314
rb_Float
VALUE rb_Float(VALUE)
Equivalent to Kernel#Float in Ruby.
Definition: object.c:3493
Qundef
#define Qundef
Definition: ruby.h:470
TMOPT_IN
@ TMOPT_IN
Definition: time.c:2712
rb_define_singleton_method
void rb_define_singleton_method(VALUE obj, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a singleton method for obj.
Definition: class.c:1755
T_RATIONAL
#define T_RATIONAL
Definition: ruby.h:541
tm::tm_sec
int tm_sec
Definition: rb_mjit_min_header-2.7.0.h:1934
rb_define_method
void rb_define_method(VALUE klass, const char *name, VALUE(*func)(ANYARGS), int argc)
Definition: class.c:1551
rb_long2int
#define rb_long2int(n)
Definition: ruby.h:350
rb_time_new
VALUE rb_time_new(time_t sec, long usec)
Definition: time.c:2492
INT2NUM
#define INT2NUM(x)
Definition: ruby.h:1609
ptr
struct RIMemo * ptr
Definition: debug.c:74
rb_time_timeval
struct timeval rb_time_timeval(VALUE time)
Definition: time.c:2675
rb_Integer
VALUE rb_Integer(VALUE)
Equivalent to Kernel#Integer in Ruby.
Definition: object.c:3106
Qfalse
#define Qfalse
Definition: ruby.h:467
DBL2NUM
#define DBL2NUM(dbl)
Definition: ruby.h:967
rb_numeric_quo
VALUE rb_numeric_quo(VALUE x, VALUE y)
Definition: rational.c:2014
rb_ary_new3
#define rb_ary_new3
Definition: intern.h:104
VTM_WDAY_INITVAL
#define VTM_WDAY_INITVAL
Definition: time.c:56
NULL
#define NULL
Definition: _sdbm.c:101
tm::tm_mon
int tm_mon
Definition: rb_mjit_min_header-2.7.0.h:1938
uint32_t
unsigned int uint32_t
Definition: sha2.h:101
rb_cmpint
#define rb_cmpint(cmp, a, b)
tm::tm_mday
int tm_mday
Definition: rb_mjit_min_header-2.7.0.h:1937
PRIsVALUE
#define PRIsVALUE
Definition: ruby.h:166
int64_t
__int64_t int64_t
Definition: rb_mjit_min_header-2.7.0.h:1180
WIDEVALUE
VALUE WIDEVALUE
Definition: time.c:220
tzname
#define tzname
Definition: rb_mjit_min_header-2.7.0.h:1995
TIMET2WV
#define TIMET2WV(t)
Definition: time.c:620
id_divmod
#define id_divmod
Definition: time.c:44
FIX2LONG
#define FIX2LONG(x)
Definition: ruby.h:394
ID2SYM
#define ID2SYM(x)
Definition: ruby.h:414
rb_intern
#define rb_intern(str)
error
const rb_iseq_t const char * error
Definition: rb_mjit_min_header-2.7.0.h:13506
strlen
size_t strlen(const char *)
tm::tm_hour
int tm_hour
Definition: rb_mjit_min_header-2.7.0.h:1936
rb_respond_to
int rb_respond_to(VALUE, ID)
Definition: vm_method.c:2190
gmtime
struct tm * gmtime(const time_t *_timer)
rb_check_arity
#define rb_check_arity
Definition: intern.h:347
wideint_t
long wideint_t
Definition: time.c:219
timespec::tv_nsec
long tv_nsec
Definition: missing.h:62
ULL2NUM
#define ULL2NUM(v)
Definition: rb_mjit_min_header-2.7.0.h:4242
NDIV
#define NDIV(x, y)
Definition: time.c:52
v
int VALUE v
Definition: rb_mjit_min_header-2.7.0.h:12332
rb_usascii_str_new_static
VALUE rb_usascii_str_new_static(const char *, long)
Definition: string.c:878
rb_str_resize
VALUE rb_str_resize(VALUE, long)
Definition: string.c:2709
strftimev
#define strftimev(fmt, time, enc)
Definition: time.c:4044
rb_funcallv
#define rb_funcallv(recv, mid, argc, argv)
Definition: rb_mjit_min_header-2.7.0.h:7899
GetTimeval
#define GetTimeval(obj, tobj)
Definition: time.c:1731
RUBY_TYPED_DEFAULT_FREE
#define RUBY_TYPED_DEFAULT_FREE
Definition: ruby.h:1203
rb_raise
void rb_raise(VALUE exc, const char *fmt,...)
Definition: error.c:2669
MUL_OVERFLOW_FIXWV_P
#define MUL_OVERFLOW_FIXWV_P(a, b)
Definition: time.c:237
rb_str_tmp_frozen_acquire
VALUE rb_str_tmp_frozen_acquire(VALUE str)
Definition: string.c:1210
rb_ary_entry
VALUE rb_ary_entry(VALUE ary, long offset)
Definition: array.c:1512
rb_eRangeError
VALUE rb_eRangeError
Definition: error.c:926
rb_str_to_inum
VALUE rb_str_to_inum(VALUE str, int base, int badcheck)
Definition: bignum.c:4268
wday_p
#define wday_p(n)
Definition: time.c:4564
timev.h
LONG2NUM
#define LONG2NUM(x)
Definition: ruby.h:1644
obj
const VALUE VALUE obj
Definition: rb_mjit_min_header-2.7.0.h:5742
TIME_TZMODE_UNINITIALIZED
#define TIME_TZMODE_UNINITIALIZED
Definition: time.c:1722
ge
#define ge(x, y)
Definition: time.c:86
gt
#define gt(x, y)
Definition: time.c:84
rb_obj_class
VALUE rb_obj_class(VALUE)
Equivalent to Object#class in Ruby.
Definition: object.c:217
rb_integer_pack
int rb_integer_pack(VALUE val, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
Definition: bignum.c:3547
rb_alias
void rb_alias(VALUE, ID, ID)
Definition: vm_method.c:1581
memcpy
void * memcpy(void *__restrict, const void *__restrict, size_t)
rb_time_interval
struct timeval rb_time_interval(VALUE num)
Definition: time.c:2669
tm::tm_isdst
int tm_isdst
Definition: rb_mjit_min_header-2.7.0.h:1942
ruby_marshal_read_long
long ruby_marshal_read_long(const char **buf, long len)
Definition: marshal.c:1266
DATA_PTR
#define DATA_PTR(dta)
Definition: ruby.h:1175
fprintf
int fprintf(FILE *__restrict, const char *__restrict,...) __attribute__((__format__(__printf__
LIKELY
#define LIKELY(x)
Definition: ffi_common.h:125
timespec::tv_sec
time_t tv_sec
Definition: missing.h:61
rb_encoding
const typedef OnigEncodingType rb_encoding
Definition: encoding.h:115
rb_check_frozen
#define rb_check_frozen(obj)
Definition: intern.h:319
rb_Rational1
#define rb_Rational1(x)
Definition: intern.h:182
strftime
size_t strftime(char *__restrict _s, size_t _maxsize, const char *__restrict _fmt, const struct tm *__restrict _t)
mulquov
#define mulquov(x, y, z)
Definition: time.c:171
rb_big_cmp
VALUE rb_big_cmp(VALUE x, VALUE y)
Definition: bignum.c:5419
rb_time_succ
VALUE rb_time_succ(VALUE time)
Definition: time.c:4229
WINT2WV
#define WINT2WV(wi)
Definition: time.c:264
i
uint32_t i
Definition: rb_mjit_min_header-2.7.0.h:5464
IsTimeval
#define IsTimeval(obj)
Definition: time.c:1734
INT_MAX
#define INT_MAX
Definition: rb_mjit_min_header-2.7.0.h:4052
long
#define long
Definition: rb_mjit_min_header-2.7.0.h:2880
base_dump_size
@ base_dump_size
Definition: time.c:5095
leap_year_v_p
#define leap_year_v_p(y)
Definition: time.c:670
TYPEOF_TIMEVAL_TV_SEC
#define TYPEOF_TIMEVAL_TV_SEC
Definition: timev.h:25
rb_time_timespec_new
VALUE rb_time_timespec_new(const struct timespec *ts, int offset)
Returns a time object with UTC/localtime/fixed offset.
Definition: time.c:2530
FIXWV2WINT
#define FIXWV2WINT(w)
Definition: time.c:231
rb_time_utc_offset
VALUE rb_time_utc_offset(VALUE time)
Definition: time.c:4791
EXTRACT_TIME
#define EXTRACT_TIME()
stderr
#define stderr
Definition: rb_mjit_min_header-2.7.0.h:1485
rb_sys_fail
void rb_sys_fail(const char *mesg)
Definition: error.c:2793
rb_eTypeError
VALUE rb_eTypeError
Definition: error.c:922
rb_copy_generic_ivar
void rb_copy_generic_ivar(VALUE, VALUE)
Definition: variable.c:1447
validate_vtm_range
#define validate_vtm_range(mem, b, e)
ruby_marshal_write_long
int ruby_marshal_write_long(long x, char *buf)
Definition: marshal.c:307
NORETURN
NORETURN(static void invalid_utc_offset(void))
rb_integer_unpack
VALUE rb_integer_unpack(const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
Definition: bignum.c:3633
INTEGER_PACK_NATIVE_BYTE_ORDER
#define INTEGER_PACK_NATIVE_BYTE_ORDER
Definition: intern.h:155
rb_eRuntimeError
VALUE rb_eRuntimeError
Definition: error.c:920
RSHIFT
#define RSHIFT(x, y)
Definition: rb_mjit_min_header-2.7.0.h:414
digit
#define digit(x)
Definition: langinfo.c:56
mod
#define mod(x, y)
Definition: date_strftime.c:28
SIGNED_WIDEVALUE
SIGNED_VALUE SIGNED_WIDEVALUE
Definition: time.c:221
STRNCASECMP
#define STRNCASECMP(s1, s2, n)
Definition: ruby.h:2324
StringValuePtr
#define StringValuePtr(v)
Definition: ruby.h:603
rb_big_minus
VALUE rb_big_minus(VALUE x, VALUE y)
Definition: bignum.c:5853
uint8_t
unsigned char uint8_t
Definition: sha2.h:100
FALSE
#define FALSE
Definition: nkf.h:174
DEBUG_REPORT_GUESSRANGE
#define DEBUG_REPORT_GUESSRANGE
Definition: time.c:3114
FIXNUM_P
#define FIXNUM_P(f)
Definition: ruby.h:396
rb_usascii_str_new_cstr
#define rb_usascii_str_new_cstr(str)
Definition: rb_mjit_min_header-2.7.0.h:6121
rb_to_int
VALUE rb_to_int(VALUE)
Converts val into Integer.
Definition: object.c:3021
localtime_r
struct tm * localtime_r(const time_t *, struct tm *)
Definition: win32.c:7862
WIDEVAL_WRAP
#define WIDEVAL_WRAP(v)
Definition: time.c:249
rb_check_to_int
VALUE rb_check_to_int(VALUE)
Tries to convert val into Integer.
Definition: object.c:3036
CONST_ID
#define CONST_ID(var, str)
Definition: ruby.h:1841
StringValueCStr
#define StringValueCStr(v)
Definition: ruby.h:604
rb_check_array_type
VALUE rb_check_array_type(VALUE ary)
Definition: array.c:909
RSTRUCT_SET
#define RSTRUCT_SET(st, idx, v)
Definition: ruby.h:1257
D28
#define D28
Definition: time.c:807
D30
#define D30
Definition: time.c:815
le
#define le(x, y)
Definition: time.c:85
id_name
#define id_name
Definition: time.c:45
rb_typeddata_is_kind_of
int rb_typeddata_is_kind_of(VALUE obj, const rb_data_type_t *data_type)
Definition: error.c:872
timeval::tv_sec
time_t tv_sec
Definition: missing.h:54
CLASS_OF
#define CLASS_OF(v)
Definition: ruby.h:484
fmt
const VALUE int int int int int int VALUE char * fmt
Definition: rb_mjit_min_header-2.7.0.h:6462
rb_num_zerodiv
void rb_num_zerodiv(void)
Definition: numeric.c:194
id_to_i
#define id_to_i
Definition: complex.c:40
rb_rational_new
VALUE rb_rational_new(VALUE, VALUE)
Definition: rational.c:1945
D31
#define D31
Definition: time.c:819
neg
#define neg(x)
Definition: time.c:141
char
#define char
Definition: rb_mjit_min_header-2.7.0.h:2876
rb_cObject
RUBY_EXTERN VALUE rb_cObject
Definition: ruby.h:2010
get_attr
#define get_attr(attr, iffound)
buf
unsigned char buf[MIME_BUF_SIZE]
Definition: nkf.c:4322
n
const char size_t n
Definition: rb_mjit_min_header-2.7.0.h:5456
rb_str_cat_cstr
#define rb_str_cat_cstr(str, ptr)
Definition: rb_mjit_min_header-2.7.0.h:6126
rb_exc_raise
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition: eval.c:667
T_BIGNUM
#define T_BIGNUM
Definition: ruby.h:533
TypedData_Get_Struct
#define TypedData_Get_Struct(obj, type, data_type, sval)
Definition: ruby.h:1252
rb_funcall
#define rb_funcall(recv, mid, argc,...)
Definition: rb_mjit_min_header-2.7.0.h:6585
internal.h
OBJ_INIT_COPY
#define OBJ_INIT_COPY(obj, orig)
Definition: intern.h:331
UTC_ZONE
#define UTC_ZONE
Definition: time.c:46
timeval::tv_usec
long tv_usec
Definition: missing.h:55
arg
VALUE arg
Definition: rb_mjit_min_header-2.7.0.h:5601
argv
char ** argv
Definition: ruby.c:223
f
#define f
idTo_i
@ idTo_i
Definition: rb_mjit_min_header-2.7.0.h:8722
NUM2TIMET
#define NUM2TIMET(v)
Definition: rb_mjit_min_header-2.7.0.h:120
TIME_SCALE
#define TIME_SCALE
Definition: timev.h:22
rb_sprintf
VALUE rb_sprintf(const char *format,...)
Definition: sprintf.c:1197
rb_strftime
VALUE rb_strftime(const char *format, size_t format_len, rb_encoding *enc, VALUE time, const struct vtm *vtm, VALUE timev, int gmt)
Definition: strftime.c:919
klass
VALUE klass
Definition: rb_mjit_min_header-2.7.0.h:13254
rb_int_positive_p
int rb_int_positive_p(VALUE num)
Definition: numeric.c:301
EXTRACT_VTM
#define EXTRACT_VTM()
M31
#define M31(m)
Definition: time.c:788
timeval
Definition: missing.h:53
rb_hash
VALUE rb_hash(VALUE obj)
Definition: hash.c:129
ruby_tz_uptodate_p
bool ruby_tz_uptodate_p
Definition: time.c:674
TZMODE_SET_LOCALTIME
#define TZMODE_SET_LOCALTIME(tobj)
Definition: time.c:1741
str
char str[HTML_ESCAPE_MAX_LEN+1]
Definition: escape.c:18
lt
#define lt(x, y)
Definition: time.c:83
modf
double modf(double, double *)
FIXNUM_MIN
#define FIXNUM_MIN
Definition: ruby.h:260
rb_usascii_str_new
#define rb_usascii_str_new(str, len)
Definition: rb_mjit_min_header-2.7.0.h:6118
rb_mComparable
VALUE rb_mComparable
Definition: compar.c:16
gmtime_r
struct tm * gmtime_r(const time_t *, struct tm *)
Definition: win32.c:7838
RUBY_TYPED_FREE_IMMEDIATELY
#define RUBY_TYPED_FREE_IMMEDIATELY
Definition: ruby.h:1207
rb_big_mul
VALUE rb_big_mul(VALUE x, VALUE y)
Definition: bignum.c:5933
MEMCPY
#define MEMCPY(p1, p2, type, n)
Definition: ruby.h:1753
rb_time_num_new
VALUE rb_time_num_new(VALUE timev, VALUE off)
Definition: time.c:2553
rb_time_zone_abbreviation
VALUE rb_time_zone_abbreviation(VALUE zone, VALUE time)
Definition: time.c:5650
M29
#define M29(m)
Definition: time.c:780
wideval_t
WIDEVALUE wideval_t
Definition: time.c:248
TZMODE_SET_FIXOFF
#define TZMODE_SET_FIXOFF(tobj, off)
Definition: time.c:1744
FIXWV_P
#define FIXWV_P(w)
Definition: time.c:236
rb_enc_str_asciicompat_p
#define rb_enc_str_asciicompat_p(str)
Definition: encoding.h:257
clock_gettime
int clock_gettime(clockid_t, struct timespec *)
Definition: win32.c:4612
NIL_P
#define NIL_P(v)
Definition: ruby.h:482
rb_str_tmp_frozen_release
void rb_str_tmp_frozen_release(VALUE str, VALUE tmp)
Definition: string.c:1217
argc
int argc
Definition: ruby.c:222
rb_big_plus
VALUE rb_big_plus(VALUE x, VALUE y)
Definition: bignum.c:5824
rb_singleton_class
VALUE rb_singleton_class(VALUE obj)
Returns the singleton class of obj.
Definition: class.c:1725
rb_check_funcall_default
VALUE rb_check_funcall_default(VALUE, ID, int, const VALUE *, VALUE)
Definition: vm_eval.c:533
TIME_INIT_P
#define TIME_INIT_P(tobj)
Definition: time.c:1735
rb_strftime_timespec
VALUE rb_strftime_timespec(const char *format, size_t format_len, rb_encoding *enc, VALUE time, const struct vtm *vtm, struct timespec *ts, int gmt)
Definition: strftime.c:929
tm
Definition: rb_mjit_min_header-2.7.0.h:1932
rb_data_type_struct
Definition: ruby.h:1148
tm::tm_year
int tm_year
Definition: rb_mjit_min_header-2.7.0.h:1939
RFLOAT_VALUE
#define RFLOAT_VALUE(v)
Definition: ruby.h:966
GUESS
#define GUESS(p)
wmulquoll
#define wmulquoll(x, y, z)
Definition: time.c:416
rb_timespec_now
void rb_timespec_now(struct timespec *ts)
Definition: time.c:1873
rb_str_new
#define rb_str_new(str, len)
Definition: rb_mjit_min_header-2.7.0.h:6116
rb_gc_mark
void rb_gc_mark(VALUE ptr)
Definition: gc.c:5212
rb_time_timespec_interval
struct timespec rb_time_timespec_interval(VALUE num)
Definition: time.c:2706
Qtrue
#define Qtrue
Definition: ruby.h:468
Init_Time
void Init_Time(void)
Definition: time.c:5810
rb_big_div
VALUE rb_big_div(VALUE x, VALUE y)
Definition: bignum.c:6091
FIXWVABLE
#define FIXWVABLE(i)
Definition: time.c:229
len
uint8_t len
Definition: escape.c:17
idCmp
@ idCmp
Definition: id.h:84
M30
#define M30(m)
Definition: time.c:784
tm::tm_yday
int tm_yday
Definition: rb_mjit_min_header-2.7.0.h:1941
rb_class_new_instance
VALUE rb_class_new_instance(int, const VALUE *, VALUE)
Allocates and initializes an instance of klass.
Definition: object.c:1955
timespec
Definition: missing.h:60
id_div
#define id_div
Definition: time.c:43
LONG2FIX
#define LONG2FIX(i)
Definition: ruby.h:265
rb_ivar_set
VALUE rb_ivar_set(VALUE, ID, VALUE)
Definition: variable.c:1300
T_STRING
#define T_STRING
Definition: ruby.h:528
time_succ
#define time_succ
Definition: time.c:4245
rb_define_class_under
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition: class.c:698
mktime
time_t mktime(struct tm *_timeptr)
FIXWV_MIN
#define FIXWV_MIN
Definition: time.c:228
RB_INTEGER_TYPE_P
#define RB_INTEGER_TYPE_P(obj)
Definition: ruby_missing.h:15
TIMET_MIN
#define TIMET_MIN
Definition: rb_mjit_min_header-2.7.0.h:6641
ruby::backward::cxxanyargs::rb_define_virtual_variable
void rb_define_virtual_variable(const char *q, type *w, void_type *e)
Define a function-backended global variable.
Definition: cxxanyargs.hpp:59
VTM_ISDST_INITVAL
#define VTM_ISDST_INITVAL
Definition: time.c:57
idName
@ idName
Definition: rb_mjit_min_header-2.7.0.h:8738
NUM2INT
#define NUM2INT(x)
Definition: ruby.h:715
T_STRUCT
#define T_STRUCT
Definition: ruby.h:532
Qnil
#define Qnil
Definition: ruby.h:469
rb_fstring_lit
#define rb_fstring_lit(str)
Definition: internal.h:2123
DIV
#define DIV(n, d)
Definition: time.c:54
arg_range_check
#define arg_range_check(v)
rb_absint_size
size_t rb_absint_size(VALUE val, int *nlz_bits_ret)
Definition: bignum.c:3247
tm::tm_gmtoff
long tm_gmtoff
Definition: rb_mjit_min_header-2.7.0.h:1943
rb_int_plus
VALUE rb_int_plus(VALUE x, VALUE y)
Definition: numeric.c:3610
RB_GC_GUARD
#define RB_GC_GUARD(v)
Definition: ruby.h:585
WIDEVAL_GET
#define WIDEVAL_GET(w)
Definition: time.c:250
numberof
#define numberof(array)
Definition: etc.c:618
rb_rescue
VALUE rb_rescue(VALUE(*b_proc)(VALUE), VALUE data1, VALUE(*r_proc)(VALUE, VALUE), VALUE data2)
An equivalent of rescue clause.
Definition: eval.c:1046
gettimeofday
int gettimeofday(struct timeval *, struct timezone *)
Definition: win32.c:4598
RSTRING_LEN
#define RSTRING_LEN(str)
Definition: ruby.h:1005
PACKED_STRUCT_UNALIGNED
PACKED_STRUCT_UNALIGNED(struct time_object { wideval_t timew;struct vtm vtm;unsigned int tzmode:3;unsigned int tm_got:1;})
D29
#define D29
Definition: time.c:811
rb_define_private_method
void rb_define_private_method(VALUE klass, const char *name, VALUE(*func)(ANYARGS), int argc)
Definition: class.c:1569
tm::tm_zone
const char * tm_zone
Definition: rb_mjit_min_header-2.7.0.h:1944
rb_enc_str_new
VALUE rb_enc_str_new(const char *, long, rb_encoding *)
Definition: string.c:796
idTo_r
@ idTo_r
Definition: rb_mjit_min_header-2.7.0.h:8724
rb_define_alloc_func
void rb_define_alloc_func(VALUE, rb_alloc_func_t)
RTEST
#define RTEST(v)
Definition: ruby.h:481
dup
int dup(int __fildes)
TIMET_MAX
#define TIMET_MAX
Definition: rb_mjit_min_header-2.7.0.h:6640
RSTRUCT_CONST_PTR
#define RSTRUCT_CONST_PTR(st)
Definition: internal.h:962
RB_FLOAT_TYPE_P
#define RB_FLOAT_TYPE_P(obj)
Definition: ruby.h:556
TYPEOF_TIMEVAL_TV_USEC
#define TYPEOF_TIMEVAL_TV_USEC
Definition: timev.h:31
rb_usascii_encoding
rb_encoding * rb_usascii_encoding(void)
Definition: encoding.c:1340
rb_int_minus
VALUE rb_int_minus(VALUE x, VALUE y)
Definition: numeric.c:3649
TZMODE_FIXOFF_P
#define TZMODE_FIXOFF_P(tobj)
Definition: time.c:1743
name
const char * name
Definition: nkf.c:208